Advanced Search+
Hua ZHOU, Dan DU, Zhongshi YANG, K. SAITO, Qingxi YANG, Wei ZHANG, Guojian NIU. 3D electromagnetic simulation of the coupling characteristics and double-stub Ferrite tuners impedance matching for EAST ICRH four-strap antenna[J]. Plasma Science and Technology, 2024, 26(11): 114003. DOI: 10.1088/2058-6272/ad68ad
Citation: Hua ZHOU, Dan DU, Zhongshi YANG, K. SAITO, Qingxi YANG, Wei ZHANG, Guojian NIU. 3D electromagnetic simulation of the coupling characteristics and double-stub Ferrite tuners impedance matching for EAST ICRH four-strap antenna[J]. Plasma Science and Technology, 2024, 26(11): 114003. DOI: 10.1088/2058-6272/ad68ad

3D electromagnetic simulation of the coupling characteristics and double-stub Ferrite tuners impedance matching for EAST ICRH four-strap antenna

More Information
  • A program developed with COMSOL software integrates EAST four-strap antenna coupling with the double-stub Ferrite tuners (FT) impedance matching, obtaining physical quantities crucial for predicting the overall performance of the ion cyclotron resonance heating (ICRH) antenna and matching system. These quantities encompass S-matrix, port complex impedance, reflection coefficients, electric field and voltage distribution, and optimal matching settings. In this study, we explore the relationship between S-matrix, reflection coefficients, port complex impedance, and frequency. Then, we analyze the impact of Faraday screens placement position and transparency, the distance from the Faraday screen (FS) to the current straps (CS), the relative distance between ports, and the characteristic impedance of the transmission line on the coupling characteristic impedance of the EAST ICRH system. Finally, we simulate the electric field distribution and voltage distribution of the EAST ICRH system for plasma heating with double-stub FT impedance matching. Using optimized parameters, the coupling power of the ICRH system can be approximately doubled. The results present herein may offer guidance for the design of high-power, long-pulse operation ICRH antenna systems.

  • This work was supported by National Magnetic Confinement Fusion Energy Development Research Project (Nos. 2022YFE03070003 and 2019YFE03070000), Natural Science Foundation of Hunan Province (No. 2020JJ4515), Key Projects of Hunan Provincial Department of Education (No. 20A432), the Government Sponsored Study Abroad Program of the Chinese Scholarship Council (CSC) (No. 202108430056), Anhui Provincial Natural Science Foundation (No. 2308085MA23), IAEA Coordinated Research Project F43026 (No. 26480), the National Key Research & Development Program of China (No. 2018YFE0303103), National Natural Science Foundation of China (Nos. 11875287 and 12275314), Anhui Provincial Key Research & Development Project (No. 205258180096).

  • [1]
    Messiaen A et al 2021 Plasma Phys. Control. Fusion 63 045021 doi: 10.1088/1361-6587/abdf2b
    [2]
    Qin C M et al 2013 Plasma Phys. Control. Fusion 55 015004 doi: 10.1088/0741-3335/55/1/015004
    [3]
    Bobkov V et al 2021 Nucl. Fusion 61 046039 doi: 10.1088/1741-4326/abe7d0
    [4]
    Du D et al 2023 Nucl. Fusion 63 126027 doi: 10.1088/1741-4326/acf5fe
    [5]
    Tierens W et al 2019 Nucl. Fusion 59 046001 doi: 10.1088/1741-4326/aaf455
    [6]
    Saito K et al 2022 Plasma Fusion Res. 17 2405009 doi: 10.1585/pfr.17.2405009
    [7]
    Helou W et al 2020 AIP Conf. Proc. 2254 030009 doi: 10.1063/5.0013992
    [8]
    Noterdaeme J M et al 2005 Fusion Eng. Des. 74 191 doi: 10.1016/j.fusengdes.2005.06.071
    [9]
    Monakhov I et al 2018 Nucl. Fusion 58 046012 doi: 10.1088/1741-4326/aaace3
    [10]
    Hillairet J et al 2021 Nucl. Fusion 61 096030 doi: 10.1088/1741-4326/ac1759
    [11]
    Koch R et al 1986 Comput. Phys. Commun. 40 1 doi: 10.1016/0010-4655(86)90145-1
    [12]
    Yang H et al 2018 Phys. Plasmas 25 122512 doi: 10.1063/1.5023079
    [13]
    Louche F et al 2011 Nucl. Fusion 51 103002 doi: 10.1088/0029-5515/51/10/103002
    [14]
    Champeaux S et al 2011 AIP Conf. Proc. 1406 41 doi: 10.1063/1.3664924
    [15]
    Li J H et al 2021 J. Nucl. Sci. Technol. 58 837 doi: 10.1080/00223131.2021.1879689
    [16]
    Jacquot J et al 2013 Plasma Phys. Control. Fusion 55 115004 doi: 10.1088/0741-3335/55/11/115004
    [17]
    Shiraiwa S et al 2010 Phys. Plasmas 17 056119 doi: 10.1063/1.3396371
    [18]
    Argouarch A et al 2009 Fusion Eng. Des. 84 275 doi: 10.1016/j.fusengdes.2009.01.018
    [19]
    Saito K et al 2001 Rev. Sci. Instrum. 72 2015 doi: 10.1063/1.1350636
    [20]
    Prechtl M et al 2009 Fusion Eng. Des. 84 1539 doi: 10.1016/j.fusengdes.2009.01.066
    [21]
    Li J L et al 2015 J. Fusion Energy 34 1067 doi: 10.1007/s10894-015-9920-9
    [22]
    Lin Y et al 2015 Fusion Eng. Des. 1689 070009 doi: 10.1016/j.fusengdes.2015.06.022
    [23]
    Lin Y et al 2009 Fusion Eng. Des. 84 33 doi: 10.1016/j.fusengdes.2008.08.044
    [24]
    Monakhov I et al 2003 AIP Conf. Proc. 694 150 doi: 10.1063/1.1638016
    [25]
    Monakhov I et al 2005 Fusion Eng. Des. 74 467 doi: 10.1016/j.fusengdes.2005.06.196
    [26]
    Monakhov I et al 2009 AIP Conf. Proc. 1187 205
    [27]
    Manman X U et al 2017 Plasma Sci. Technol. 19 115601 doi: 10.1088/2058-6272/aa8167
    [28]
    Yang X Q et al 2012 Fusion Eng. Des. 87 1249 doi: 10.1016/j.fusengdes.2012.02.123
    [29]
    Colas L et al 2019 J. Comput. Phys 389 94 doi: 10.1016/j.jcp.2019.02.017
    [30]
    Stix T H 1992 Waves in Plasmas 2nd ed (New York: AIP
    [31]
    Jaeger E F et al 2001 Phys. Plasmas 8 1573 doi: 10.1063/1.1359516
    [32]
    Berenger J P 1994 Phys. Plasmas 114 185
    [33]
    Zhou L et al 2016 IEEE Trans. Plasma Sci. 44 1731 doi: 10.1109/TPS.2016.2598489
    [34]
    Kwon M et al 1990 IEEE Trans. Plasma Sci. 18 184 doi: 10.1109/27.131018
    [35]
    Lamalle P U 1997 J. Phys. D: Appl. Phys. 30 78 doi: 10.1088/0022-3727/30/1/010
    [36]
    Tan Q Y et al 2020 Fusion Sci. Technol. 76 88 doi: 10.1080/15361055.2019.1680039
    [37]
    Wang S J et al 2001 Nucl. Eng. Technol. 33 201 doi: JAKO200111921634022
  • Related Articles

    [1]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [2]Xuechen LI (李雪辰), Biao WANG (王彪), Pengying JIA (贾鹏英), Linwei YANG (杨林伟), Yaru LI (李亚茹), Jingdi CHU (楚婧娣). Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Science and Technology, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6
    [3]PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
    [4]ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
    [5]WU Guojiang(吴国将), ZHANG Xiaodong(张晓东). Analysis of the Variability of the L-H Transition Power Threshold in a Helium-4 Discharge[J]. Plasma Science and Technology, 2014, 16(6): 557-561. DOI: 10.1088/1009-0630/16/6/03
    [6]HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22
    [7]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]HE Wei (何为), LIU Xinghua (刘兴华), XIAN Richang (咸日常), CHEN Suhong (陈素红), LIAO Ruijin (廖瑞金), YANG Fan (杨帆), XIAO Hanguang (肖汉光). Kinetics Characteristics and Bremsstrahlung of Argon DC Discharge Under Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 335-342. DOI: 10.1088/1009-0630/15/4/06
    [10]HE Feng (何锋), HE Shoujie (何寿杰), ZHAO Xiaofei (赵晓菲), GUO Bingang (郭滨刚), OUYANG Jiting (欧阳吉庭). Study of the Discharge Mode in Micro-Hollow Cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083. DOI: 10.1088/1009-0630/14/12/08
  • Cited by

    Periodical cited type(14)

    1. Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c
    2. ZHANG, Z., ZHAO, Z., LIU, X. et al. Full lifetime demonstration of a Micro-Cathode-Arc thruster evolution characteristics. Chinese Journal of Aeronautics, 2024, 37(6): 38-49. DOI:10.1016/j.cja.2024.03.043
    3. Xu, Z., Xiong, K., Huang, X. Temperature Field Simulation and Intelligent Control Algorithm in the Process of Flameless Welding of Transmission Line Grounding Device. 2024. DOI:10.1109/AIARS63200.2024.00135
    4. Liu, X.-Y., Zhao, Z.-J., Zhang, Z. et al. Experimental Study on Conductive Film State of Micro-Cathode Arc Thruster | [微阴极电弧推力器导电薄膜状态实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210060. DOI:10.13675/j.cnki.tjjs.2210060
    5. Liu, Y.-X., Geng, J.-Y., Zhang, X. et al. Experimental Study on Discharge Characteristics of Plate Electrode in Micro-Cathode Arc Thruster | [微阴极电弧推力器平板电极放电特性实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2211074. DOI:10.13675/j.cnki.tjjs.2211074
    6. Tang, H.-B., Chen, Z.-Y., Wang, Y.-B. et al. Research Review for Magnetic Nozzle of Electric Propulsion | [电推进磁喷管研究综述]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210071. DOI:10.13675/j.cnki.tjjs.2210071
    7. Ji, T., Wei, L., Wang, L. et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 245201. DOI:10.1088/1361-6463/acc8e3
    8. Yan, H., Geng, J.-Y., Chen, M.-Y. et al. Performance Investigation of High-Total-Impulse Micro-Cathode Arc Thruster | [高总冲微阴极电弧推力器实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208104. DOI:10.13675/j.cnki.tjjs.2208104
    9. Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f
    10. Gao, Y., Wang, W., Li, Y. et al. The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field. Plasma Science and Technology, 2022, 24(7): 074002. DOI:10.1088/2058-6272/ac4d1c
    11. Huang, W.-D., Geng, J.-Y., Yan, H. et al. Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration. Journal of Applied Physics, 2022, 131(10): 103303. DOI:10.1063/5.0079589
    12. Hu, Y., Huang, Z., Cao, Y. et al. Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Science and Technology, 2021, 30(7): 075006. DOI:10.1088/1361-6595/ac0a48
    13. Wang, Z.-X., Cao, Z.-Y., Li, R. et al. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field | [纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(5): 055201. DOI:10.7498/aps.70.20201701
    14. ZHANG, W., LIU, W., TIAN, J. et al. Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge. Plasma Science and Technology, 2021, 23(6): 064004. DOI:10.1088/2058-6272/abeb5c

    Other cited types(0)

Catalog

    Figures(14)

    Article views (40) PDF downloads (19) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return