Citation: | Jingfeng YAO, Jianfei LI, Shixin ZHAO, Chengxun YUAN, Lin MIAO, Nie CHEN, A. M. ASTAFIEV, A. A. KUDRYAVTSEV, G. D. SHABANOV. Progress in the creation of long-lived atmospheric luminous formations in a pulsed electric discharge with an electrolytic electrode[J]. Plasma Science and Technology, 2024, 26(12): 125403. DOI: 10.1088/2058-6272/ad7b05 |
This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge. The findings indicate that the Gatchina discharge exhibits the majority of the characteristics of natural ball lightning, making it the most effective method for reproducing and studying this phenomenon. To a large extent, our new results are based on experiments performed for the first time to visualize dust particles arising in an erosive emission, as well as the formation of vortex flows. These experiments make it possible to explain the ability of the Gatchina discharge to maintain its shape for a long time in the afterglow.
This work was supported by Province Key R&D Program of Heilongjiang (No. JD22A005), National Natural Science Foundation of China (Nos. 12175050 and 12205067).
[1] |
Boerner H 2019 Ball lightning: A popular guide to a longstanding mystery in atmospheric electricity (Cham: Springer).
|
[2] |
Singer S 1971 The Nature of Ball Lightning (New York: Springer
|
[3] |
Barry J D 1980 Ball Lightning and Bead Lightning: Extreme Forms of Atmospheric Electricity (New York: Springer
|
[4] |
Smirnov B M 1993 Phys. Rep. 224 151 doi: 10.1016/0370-1573(93)90121-S
|
[5] |
Stenhoff M 1999 Ball Lightning: An Unsolved Problem in Atmospheric Physics (New York: Springer
|
[6] |
Bychkov V L 2022 Natural and Artificial Ball Lightning in the Earth’s Atmosphere (Cham: Springer
|
[7] |
Shabanov G D 2002 Tech. Phys. Lett. 28 164 doi: 10.1134/1.1458524
|
[8] |
Shabanova N G and Shabanov G D 2004 New Energy Technol. 4 71
|
[9] |
Shabanov G D 2019 Phys. Usp. 62 92 doi: 10.3367/UFNe.2018.03.038318
|
[10] |
Wurden C J V and Wurden G A 2011 IEEE Trans. Plasma Sci. 39 2078 doi: 10.1109/TPS.2011.2155090
|
[11] |
Versteegh A et al 2008 Plasma Sources Sci. Technol. 17 024014 doi: 10.1088/0963-0252/17/2/024014
|
[12] |
Stephan K D et al 2013 Plasma Sources Sci. Technol. 22 025018 doi: 10.1088/0963-0252/22/2/025018
|
[13] |
Dubowsky S E et al 2015 Int. J. Mass Spectrom. 376 39 doi: 10.1016/j.ijms.2014.11.011
|
[14] |
Zhao S X et al 2021 Tech. Phys. 66 1058 doi: 10.1134/S1063784221070173
|
[15] |
Zhao S et al 2022 Tech. Phys. 67 171 doi: 10.1134/S1063784222030069
|
[16] |
Zhao S X et al 2024 High Volt. 9 127 doi: 10.1049/hve2.12371
|
[17] |
Bazelyan E M and Raizer Y P 2000 Lightning Physics and Lightning Protection (Boca Raton: CRC Press
|
[18] |
Prigogine I and Stengers I 1984 Order Out of Chaos: Man's New Dialogue with Nature (New York: Bantam Books
|
[19] |
Shabanov G D et al 2009 Plasma Phys. Rep. 35 611 doi: 10.1134/S1063780X09070101
|
[20] |
Shabanov G D and Sokolovskiǐ B Y 2005 Plasma Phys. Rep. 31 512 doi: 10.1134/1.1947336
|
[21] |
Morfill G E and Ivlev A V 2009 Rev. Mod. Phys. 81 1353 doi: 10.1103/RevModPhys.81.1353
|
[22] |
Vaulina O S et al 2002 Phys. Rev. Lett. 88 245002 doi: 10.1103/PhysRevLett.88.245002
|
[23] |
Lifshitz E M and Pitaevski L P 1981 Physical Kinetics (Amsterdam: Elsevier
|
[24] |
Hariprasad M G et al 2022 Sci. Rep. 12 13882 doi: 10.1038/s41598-022-17939-w
|
[25] |
Bychkov V L et al 2012 IEEE Trans. Plasma Sci. 40 3158 doi: 10.1109/TPS.2012.2210566
|
[26] |
Bychkov V L, Anpilov S V and Savenkova N P 2014 J. Phys. Chem. B 8 50 doi: 10.1134/S1990793114010102
|
[27] |
Bychkov V L et al 2018 J. Phys.: Conf. Ser. 996 012012 doi: 10.1088/1742-6596/996/1/012012
|
[28] |
Stelmashuk V and Hoffer P 2017 IEEE Trans. Plasma Sci. 45 3160 doi: 10.1109/TPS.2017.2770224
|
[29] |
Baidak V A et al 2023 Successes Appl. Phys. 11 399
|
[30] |
Bychkov V L, Sorokovykh D E and Bychkov D V 2024 Production of artificial ball lightning using a capillary plasma generator In: 20th Intern. Workshop Complex Systems of Charged Particles and their Interaction with Electromagnetic Radiation Moscow 2024: 124
|
[31] |
Cheremisin А A et al 2023 Vestrial Russian Acad. Sci. 93 171 doi: 10.1134/S1019331623010094#citeas
|
[32] |
Kim D C et al 2020 Installation for studying the laboratory analog of ball lightning In: 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) Vladivostok: IEEE 2020: 1
|
1. | Wang, T., Du, Y., Chen, W. A Review on Megavolt Pulsed Switches and Their Time Delay Jitters. IEEE Transactions on Plasma Science, 2024. DOI:10.1109/TPS.2024.3477737 | |
2. | Wang, T., Sun, C., Yang, Y. et al. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches. Plasma Science and Technology, 2022, 24(11): 115504. DOI:10.1088/2058-6272/ac7c61 | |
3. | Wang, T., Wang, H., Huang, T. et al. Influence factors of the pulsed breakdown time delay jitter of a self-triggered UV-illuminated switch and an improvement method | [自触发紫外预电离开关脉冲击穿时延抖动影响因素及改进方法]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(7): 075010. DOI:10.11884/HPLPB202234.210459 | |
4. | Wang, T., Li, J., Wang, H. et al. Optical Diagnosis of Preionization Mechanisms and Breakdown Characteristics in a Nanosecond Switch. IEEE Transactions on Plasma Science, 2022, 50(6): 1912-1926. DOI:10.1109/TPS.2022.3173423 | |
5. | Wang, T., Huang, T., Wang, H. et al. Using Self-Triggered Sustaining Pre-Ionization to Obtain Nanosecond Jitter in a MV Pulsed Gas Switch. IEEE Transactions on Plasma Science, 2021, 49(12): 4034-4037. DOI:10.1109/TPS.2021.3127946 | |
6. | Wang, T., Du, Y., Chen, W. et al. A low-jitter self-triggered spark-discharge pre-ionization switch: Primary research on its breakdown characteristics and working mechanisms. Plasma Science and Technology, 2021, 23(11): 115508. DOI:10.1088/2058-6272/ac2420 |