Citation: | Jianglong WEI, Yahong XIE, Yuanlai XIE, Caichao JIANG, Yuanzhe ZHAO, Yongjian XU, Yuming GU, Wei YI, Wei LIU, Lyuyang BU, Dezhi YAN, Zhimin LIU, Sheng LIU, Junjun PAN, Shiyong CHEN, Ling YU, Qinglong CUI, Shihua SONG, Yuqing CHEN, Ji WANG, Ling LIU, Shengmin PAN, Bin GUO, Zhigang ZHU, Na WANG, Junwei XIE, Yuwen YANG, Tengsai ZHU, Lixin YANG, Yufan LI, Ning TANG, Qianxu WANG, Huihui HONG, Bo LIU, Yuqian LI, Yang LI, Yu GU, Xufeng PENG, Shanhu LIU, Yong WU, Xiancai MENG, Chundong HU, Lizhen LIANG. Comprehensive research facility for negative ion source neutral beam injection at CRAFT: design and first operation[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad8da7 |
Neutral beam injection (NBI) has been proven as a reliable heating and current drive method for fusion plasma. For the high-energy NBI system (particle energy > 150 keV) of large-scale fusion devices, the negative ion source neutral beam injection (NNBI) system is inevitable, which can obtain an acceptable neutralization efficiency (> 55%). But the NNBI system is very complex and challengeable. To explore and master the key NNBI technology for future fusion reactor in China, an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology (CRAFT). The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 keV for lasting 100 s. In the first operation of the CRAFT NNBI facility, a negative ion source with dual RF drivers was developed and tested. By using the 50 keV accelerator, the long-pulse and high-current extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV, 7.3 A (~ 123 A/m2), 105 s and 55.0 keV, 14.7 A (~ 248 A/m2), 30 s, respectively. By using the 200 keV accelerator, the megawatt-class negative hydrogen beam has also been achieved (135.9 keV, 8.9 A, 8 s). The whole process of the gas neutralization of negative ion beam, electric removal of residual ions, and beam transport have been demonstrated experimentally.
This work was supported by the Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228).
[1] |
Eubank H et al 1979 Phys. Rev. Lett. 43 270 doi: 10.1103/PhysRevLett.43.270
|
[2] |
Wagner F et al 1982 Phys. Rev. Lett. 49 1408 doi: 10.1103/PhysRevLett.49.1408
|
[3] |
Keilhacker M et al 1999 Nucl. Fusion 39 209 doi: 10.1088/0029-5515/39/2/306
|
[4] |
Fujita T et al 1999 Nucl. Fusion 39 1627 doi: 10.1088/0029-5515/39/11y/302
|
[5] |
Maslov M et al 2023 Nucl. Fusion 63 112002 doi: 10.1088/1741-4326/ace2d8
|
[6] |
Han H et al 2022 Nature 609 269 doi: 10.1038/s41586-022-05008-1
|
[7] |
Magee R M et al 2023 Nat. Commun. 14 955 doi: 10.1038/s41467-023-36655-1
|
[8] |
Ding S et al 2024 Nature 629 555 doi: 10.1038/s41586-024-07313-3
|
[9] |
Polevoi A R et al 2020 Nucl. Fusion 60 096024 doi: 10.1088/1741-4326/aba335
|
[10] |
Chen J L et al 2021 Nucl. Fusion 61 046002 doi: 10.1088/1741-4326/abd7b8
|
[11] |
Vincenzi P et al 2021 Plasma Phys. Control. Fusion 63 065014 doi: 10.1088/1361-6587/abf402
|
[12] |
Sugiyama S et al 2024 Nucl. Fusion 64 076014 doi: 10.1088/1741-4326/ad49b6
|
[13] |
Mikkelsen D R et al 2018 Nucl. Fusion 58 036014 doi: 10.1088/1741-4326/aaa4d2
|
[14] |
Hopf C et al 2021 Nucl. Fusion 61 106032 doi: 10.1088/1741-4326/ac227a
|
[15] |
Kashiwagi M et al 2022 Nucl. Fusion 62 026025 doi: 10.1088/1741-4326/ac388a
|
[16] |
King D B et al 2023 Nucl. Fusion 63 112005 doi: 10.1088/1741-4326/acee97
|
[17] |
Hemsworth R S et al 2017 New J. Phys. 19 025005 doi: 10.1088/1367-2630/19/2/025005
|
[18] |
Hemsworth R S and Inoue T 2005 IEEE Trans. Plasma Sci. 33 1799 doi: 10.1109/TPS.2005.860090
|
[19] |
Kojima A et al 2010 Rev. Sci. Instrum. 81 02B112 doi: 10.1063/1.3279398
|
[20] |
Tsumori K et al 2022 Nucl. Fusion 62 056016 doi: 10.1088/1741-4326/ac2d59
|
[21] |
Hu C D et al 2022 Nucl. Fusion Plasma Phys. 42 388 doi: 10.16568/j.0254-6086.202204005
|
[22] |
Xie Y H et al 2021 Nucl. Fusion Plasma Phys. 41 628 doi: 10.16568/j.0254-6086.202104008
|
[23] |
Marcuzzi D et al 2016 Rev. Sci. Instrum. 87 02B309 doi: 10.1063/1.4932615
|
[24] |
Heinemann B et al 2017 New J. Phys. 19 015001 doi: 10.1088/1367-2630/aa520c
|
[25] |
Fantz U et al 2017 Nucl. Fusion 57 116007 doi: 10.1088/1741-4326/aa778b
|
[26] |
Masiello A et al 2023 Fusion Eng. Des. 193 113801 doi: 10.1016/j.fusengdes.2023.113801
|
[27] |
Jiang C C et al 2017 Fusion Eng. Des. 117 100 doi: 10.1016/j.fusengdes.2017.02.091
|
[28] |
Hu C D et al 2018 IEEE Trans. Plasma Sci. 46 1699 doi: 10.1109/Tps.2018.2797891
|
[29] |
Huang M C et al 2018 Plasma Sci. Technol. 20 085602 doi: 10.1088/2058-6272/aabde5
|
[30] |
Huang M C et al 2019 Fusion Sci. Technol. 75 330 doi: 10.1080/15361055.2018.1557985
|
[31] |
Wünderlich D et al 2023 J. Instrum. 18 C10024 doi: 10.1088/1748-0221/18/10/c10024
|
[32] |
Franzen P et al 2014 Plasma Phys. Control. Fusion 56 025007 doi: 10.1088/0741-3335/56/2/025007
|
[33] |
Wünderlich D et al 2016 Plasma Phys. Control. Fusion 58 125005 doi: 10.1088/0741-3335/58/12/125005
|
[34] |
Fantz U et al 2020 Fusion Eng. Des. 156 111609 doi: 10.1016/j.fusengdes.2020.111609
|
[35] |
Cui Z W et al 2023 Chin. J. Vac. Sci. Technol. 43 231 doi: 10.13922/j.cnki.cjvst.202210003
|
[36] |
Tao L et al 2022 Fusion Sci Technol. 78 490 doi: 10.1080/15361055.2022.2050131
|
[37] |
Tang N et al 2022 Fusion Eng. Des. 176 113018 doi: 10.1016/j.fusengdes.2022.113018
|
[38] |
Tang N, Hu C D and Xie Y L 2024 J. Nucl. Sci. Technol. 61 606 doi: 10.1080/00223131.2023.2247406
|
[39] |
Hu C D et al 2023 Fusion Eng. Des. 189 113469 doi: 10.1016/j.fusengdes.2023.113469
|
[40] |
Wang M X et al 2022 Fusion Eng. Des. 184 113302 doi: 10.1016/j.fusengdes.2022.113302
|
[41] |
Wang M X et al 2022 Fusion Eng. Des. 182 113245 doi: 10.1016/j.fusengdes.2022.113245
|
[42] |
Lang J Q, Hu C D and Xie Y L 2021 Fusion Eng. Des. 173 112841 doi: 10.1016/j.fusengdes.2021.112841
|
[43] |
Wang Q X et al 2024 Fusion Eng. Des. 207 114637 doi: 10.1016/j.fusengdes.2024.114637
|
[44] |
Wang Q X et al 2024 Nucl. Eng. Technol. in press doi: 10.1016/j.net.2024.08.047
|
[45] |
Xu Y J et al 2021 AIP Conf. Proc. 2373 100004 doi: 10.1063/5.0057631
|
[46] |
Liang L Z et al 2021 Fusion Eng. Des. 166 112266 doi: 10.1016/j.fusengdes.2021.112266
|
[47] |
Xu Y J et al 2024 Fusion Eng. Des. 202 114432 doi: 10.1016/j.fusengdes.2024.114432
|
[48] |
Yu L et al 2024 J. Instrum. 19 C01004 doi: 10.1088/1748-0221/19/01/C01004
|
[49] |
Liang L Z et al 2015 Phys. Scr. 90 045603 doi: 10.1088/0031-8949/90/4/045603
|
[50] |
Xu Y J et al 2023 Fusion Eng. Des. 194 113891 doi: 10.1016/j.fusengdes.2023.113891
|
[51] |
Xu Y J et al 2019 J. Therm. Anal. Calorim. 139 527 doi: 10.1007/s10973-019-08292-8
|
[52] |
Toigo V et al 2021 Fusion Eng. Des. 168 112622 doi: 10.1016/j.fusengdes.2021.112622
|
[53] |
Toigo V et al 2019 Nucl. Fusion 59 086058 doi: 10.1088/1741-4326/ab2271
|
[54] |
Singh M J et al 2019 Nucl. Fusion 59 096034 doi: 10.1088/1741-4326/ab1ff8
|
[55] |
Hanada M et al 2001 Fusion Eng. Des. 56–57 505 doi: 10.1016/S0920-3796(01)00335-0
|
[56] |
Marcuzzi D et al 2023 Fusion Eng. Des. 191 113590 doi: 10.1016/j.fusengdes.2023.113590
|
[57] |
Serianni G et al 2023 IEEE Trans. Plasma Sci. 51 927 doi: 10.1109/tps.2022.3226239
|
[58] |
Sartori E et al 2023 J. Instrum. 18 C09001 doi: 10.1088/1748-0221/18/09/C09001
|
[59] |
Zhang Z Y et al 2019 Fusion Eng. Des. 148 111316 doi: 10.1016/j.fusengdes.2019.111316
|
[60] |
Wei J L et al 2021 Fusion Eng. Des. 169 112482 doi: 10.1016/j.fusengdes.2021.112482
|
[61] |
Yi W et al 2023 Fusion Eng. Des. 194 113749 doi: 10.1016/j.fusengdes.2023.113749
|
[62] |
Liang L Z et al 2023 Fusion Eng. Des. 190 113499 doi: 10.1016/j.fusengdes.2023.113499
|
[63] |
Wei J L et al 2018 IEEE Trans. Plasma Sci. 46 1149 doi: 10.1109/Tps.2017.2771825
|
[64] |
Gu Y M et al 2021 Fusion Eng. Des. 171 112600 doi: 10.1016/j.fusengdes.2021.112600
|
[65] |
Xie Y H et al 2023 J. Instrum 18 C07017 doi: 10.1088/1748-0221/18/07/C07017
|
[66] |
Yang Y W et al 2024 Plasma Phys. Control. Fusion 66 055019 doi: 10.1088/1361-6587/ad3c1e
|
[67] |
Wang N et al 2023 Plasma Sci. Technol. 25 045601 doi: 10.1088/2058-6272/aca1fb
|
[68] |
Wang N et al 2023 Phys. Scr. 98 115606 doi: 10.1088/1402-4896/acfe5c
|
[69] |
Xie J W et al 2023 IEEE Trans. Plasma Sci. 51 2225 doi: 10.1109/Tps.2023.3297197
|
[70] |
Xie J W et al 2024 Plasma Sci. Technol. 26 045602 doi: 10.1088/2058-6272/ad1043
|
[71] |
Chen Y Q et al 2024 Fusion Eng. Des. 199 114149 doi: 10.1016/j.fusengdes.2024.114149
|
[72] |
Yang Y L et al 2024 Nucl. Eng. Technol. 56 1145 doi: 10.1016/j.net.2023.11.019
|
[73] |
Peng X F et al 2023 Phys. Plasmas 30 103507 doi: 10.1063/5.0156271
|
[74] |
Peng X F et al 2024 Plasma Phys. Control. Fusion 66 105013 doi: 10.1088/1361-6587/ad705b
|
[75] |
Xie Y H et al 2021 Fusion Eng. Des. 167 112377 doi: 10.1016/j.fusengdes.2021.112377
|
[76] |
Wei J L et al 2023 Phys. Plasmas 30 033102 doi: 10.1063/5.0139827
|
[77] |
Yang Y W et al 2023 Nucl. Eng. Technol. 55 939 doi: 10.1016/j.net.2022.12.002
|
[78] |
Wünderlich D et al 2021 Nucl. Fusion 61 096023 doi: 10.1088/1741-4326/ac1758
|
[79] |
Wünderlich D et al 2021 Plasma 4 172 doi: 10.3390/plasma4010010
|
[80] |
Wünderlich D et al 2024 J. Phys.: Conf. Ser. 2743 012026 doi: 10.1088/1742-6596/2743/1/012026
|
[81] |
Gu Y M et al 2023 Fusion Eng. Des. 192 113603 doi: 10.1016/j.fusengdes.2023.113603
|
[82] |
Cui Q L et al 2020 Fusion Eng. Des. 161 112056 doi: 10.1016/j.fusengdes.2020.112056
|
[83] |
Ban T et al 2023 Fusion Eng. Des. 186 113355 doi: 10.1016/j.fusengdes.2022.113355
|
[84] |
Liu W et al 2022 Energies 15 4409 doi: 10.3390/en15124409
|
[85] |
Crowley B, Rauch J and Scoville J T 2015 Fusion Eng. Des. 96-97 443 doi: 10.1016/j.fusengdes.2015.02.028
|
[86] |
Surrey E et al 2005 Fusion Eng. Des. 73 141 doi: 10.1016/j.fusengdes.2005.06.348
|
[87] |
Li X et al 2016 Plasma Sci. Technol. 18 1215 doi: 10.1088/1009-0630/18/12/12
|
[88] |
Kim T S et al 2009 Vacuum 84 568 doi: 10.1016/j.vacuum.2009.06.052
|
[1] | Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729 |
[2] | Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875 |
[3] | Kerong HE (何科荣), Hui CHEN (陈辉), Sanqiu LIU (刘三秋). Effect of plasma absorption on dust lattice waves in hexagonal dust crystals[J]. Plasma Science and Technology, 2018, 20(4): 45001-045001. DOI: 10.1088/2058-6272/aaaadb |
[4] | Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab |
[5] | Mohsen AFSHARMANESH, Morteza HABIBI. Directional power absorption in helicon plasma sources excited by a half-helix antenna[J]. Plasma Science and Technology, 2017, 19(10): 105403. DOI: 10.1088/2058-6272/aa8030 |
[6] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[7] | LIN Min (林敏), XU Haojun (徐浩军), WEI Xiaolong (魏小龙), LIANG Hua (梁华), SONG Huimin (宋慧敏), SUN Quan (孙权), ZHANG Yanhua (张艳华). Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator[J]. Plasma Science and Technology, 2015, 17(10): 847-852. DOI: 10.1088/1009-0630/17/10/07 |
[8] | SHI Jiankui(史建魁), WANG Zheng(王铮), TAO Wei(陶伟), G. A. ZHEREBTSOV, E. B. ROMANOVA, K. G. RATOVSKY. Investigation of Total Absorption of Radio Waves in High Latitude Ionosphere[J]. Plasma Science and Technology, 2014, 16(9): 833-836. DOI: 10.1088/1009-0630/16/9/05 |
[9] | XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02 |
[10] | LI Bin, LI Hong, CHEN Zhipeng, XIE Jinlin, FENG Guangyao, LIU Wandong. Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe[J]. Plasma Science and Technology, 2010, 12(5): 513-518. |