Advanced Search+
Jianhua ZHONG, Jiabao GUAN, Lanxin LIU, Guoxing XIA, Jike WANG, Yuancun NIE. Simulation of laser plasma wakefield acceleration with external injection based on Bayesian optimization[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e8
Citation: Jianhua ZHONG, Jiabao GUAN, Lanxin LIU, Guoxing XIA, Jike WANG, Yuancun NIE. Simulation of laser plasma wakefield acceleration with external injection based on Bayesian optimization[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e8

Simulation of laser plasma wakefield acceleration with external injection based on Bayesian optimization

More Information
  • In laser wakefield acceleration, injecting an external electron beam at a certain energy is a promising approach for achieving a high-quality electron beam with low energy spread and low emittance. In this paper, the process of laser wakefield acceleration with an external injection at 10 pC has been studied in simulations. A Bayesian optimization method is used to optimize the key laser and plasma parameters so that the electron beam is accelerated to the expected energy with a small emittance and energy spread growth. The effect of the rising edge of the plasma on the transverse properties of the electron beam is simulated and optimized in order to ensure that the external electron beam is injected into the plasma without significant emittance growth. Finally, a high-quality electron beam with an energy of 1.5 GeV, a normalized transverse emittance of 0.5 mm·mrad and a relative energy spread of 0.5% at 10 pC is obtained.

  • The work was supported by Science and Technology Major Project of Hubei Province in China (No. 2021AFB001).

  • [1]
    Rodríguez-Fernández L 2010 AIP Conf. Proc. 1271 159 doi: 10.1063/1.3495646
    [2]
    Tripathi S 2021 Med. Phys. 48 e994 doi: 10.1002/mp.15152
    [3]
    Leemans W and Esarey E 2009 Phys. Today 62 44 doi: 10.1063/1.3099645
    [4]
    Hooker S M 2013 Nat. Photonics 7 775 doi: 10.1038/nphoton.2013.234
    [5]
    Palastro J P et al 2021 Phys. Plasmas 28 013109 doi: 10.1063/5.0036627
    [6]
    Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 doi: 10.1103/RevModPhys.81.1229
    [7]
    Albert F et al 2021 New J. Phys. 23 031101 doi: 10.1088/1367-2630/abcc62
    [8]
    Nakajima K 2015 Proc. Japan Acad. Ser. B 91 223 doi: 10.2183/pjab.91.223
    [9]
    Wang W T et al 2021 Nature 595 516 doi: 10.1038/s41586-021-03678-x
    [10]
    Jain A and Gupta D N 2021 Phys. Rev. Accel. Beams 24 111302 doi: 10.1103/PhysRevAccelBeams.24.111302
    [11]
    Jain A et al 2024 Sci. Rep. 14 19127 doi: 10.1038/s41598-024-69049-4
    [12]
    Ghotra H S 2022 Optik 260 169080 doi: 10.1016/j.ijleo.2022.169080
    [13]
    Ghotra H S 2023 Laser Phys. 33 076005 doi: 10.1088/1555-6611/acd371
    [14]
    Barletta W A et al 2010 Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 618 69 doi: 10.1016/j.nima.2010.02.274
    [15]
    Kalmykov S et al 2009 Phys. Rev. Lett. 103 135004 doi: 10.1103/PhysRevLett.103.135004
    [16]
    Kostyukov I et al 2009 Phys. Rev. Lett. 103 175003 doi: 10.1103/PhysRevLett.103.175003
    [17]
    Pukhov A and Gordienko S 2006 Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci. 364 623 doi: 10.1098/rsta.2005.1727
    [18]
    Fuchs M et al 2024 J. Instrum. 19 T01004 doi: 10.1088/1748-0221/19/01/T01004
    [19]
    Marchetti B et al 2016 Nucl. Instrum. Methods Phys. Res. Sect A: Accel. Spectrom. Detect. Assoc. Equip. 829 278 doi: 10.1016/j.nima.2016.03.041
    [20]
    Nghiem P A P et al 2020 Phys. Rev. Accel. Beams 23 031301 doi: 10.1103/PhysRevAccelBeams.23.031301
    [21]
    Jain N, Antonsen T M Jr and Palastro J P 2015 Phys. Rev. Lett. 115 195001 doi: 10.1103/PhysRevLett.115.195001
    [22]
    Ding H et al 2020 Phys. Rev. E 101 023209 doi: 10.1103/PhysRevE.101.023209
    [23]
    Foerster F M et al 2022 Phys. Rev. X 12 041016 doi: 10.1103/PhysRevX.12.041016
    [24]
    Xu X L et al 2023 Phys. Rev. Accel. Beams 26 111302 doi: 10.1103/PhysRevAccelBeams.26.111302
    [25]
    Radovic A et al 2018 Nature 560 41 doi: 10.1038/s41586-018-0361-2
    [26]
    Sha R et al 2023 Front. Phys. 11 1233733 doi: 10.3389/fphy.2023.1233733
    [27]
    Shalloo R J et al 2020 Nat. Commun. 11 6355 doi: 10.1038/s41467-020-20245-6
    [28]
    Wang B L et al 2023 Struct. Multidiscip. Optim. 66 217 doi: 10.1007/s00158-023-03669-8
    [29]
    Wang B L et al 2022 Inf. Sci. 591 176 doi: 10.1016/j.ins.2022.01.021
    [30]
    Berkenkamp F, Krause A and Schoelling A P 2023 Mach. Learn. 112 3713 doi: 10.1007/s10994-021-06019-1
    [31]
    Floettmann K 2011 URL: http://www.desy.de/~mpyflo/
    [32]
    Dohlus M and Limberg T 2004 URL: https://api.semanticscholar.org/CorpusID:61281580
    [33]
    Borland M 2001 Phys. Rev. ST. Accel. Beams 4 070701 doi: 10.1103/PhysRevSTAB.4.070701
    [34]
    Lehe R et al 2016 Comput. Phys. Commun. 203 66 doi: 10.1016/j.cpc.2016.02.007
    [35]
    Irshad F, Karsch S and Döpp A 2023 Phys. Rev. Res. 5 013063 doi: 10.1103/PhysRevResearch.5.013063
    [36]
    Dai Z Y et al 2024 Radiat. Detect. Technol. Methods 8 1319 doi: 10.1007/s41605-024-00455-y
    [37]
    Pelikan M, Goldberg D E and Tsutsui S 2003 Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms In: Proceedings of the SICE 2003 Annual Conference Fukui: IEEE 2003: 2738
    [38]
    Jalas S et al 2021 Phys. Rev. Lett. 126 104801 doi: 10.1103/PhysRevLett.126.104801
    [39]
    Watanabe S et al 2023 arXiv: 2304.11127
    [40]
    Mohammed J et al 2017 AIP Conf. Proc. 1860 020013 doi: 10.1063/1.4990312
    [41]
    Esarey E and Schroeder C B 2003 Physics of Laser-driven Plasma-based Acceleration Berkeley: Lawrence Berkeley National Laboratory
    [42]
    Hogan M J 2016 Rev. Accel. Sci. Technol. 9 63 doi: 10.1142/S1793626816300036
    [43]
    Albert F and Thomas A G R 2016 Plasma Phys. Control. Fusion 58 103001 doi: 10.1088/0741-3335/58/10/103001
    [44]
    Ferran Pousa A et al 2019 Phys. Rev. Lett. 123 054801 doi: 10.1103/PhysRevLett.123.054801
    [45]
    Yamin S et al 2021 Phys. Rev. Accel. Beams 24 091602 doi: 10.1103/PhysRevAccelBeams.24.091602
  • Related Articles

    [1]Ming ZENG (曾明), Ovidiu TESILEANU. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers[J]. Plasma Science and Technology, 2017, 19(7): 70502-070502. DOI: 10.1088/2058-6272/aa6437
    [2]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [3]NIE Lin (聂林), CHENG Jun (程钧), XU Hongbing (徐红兵), HUANG Yuan (黄渊), YAN Longwen (严龙文), DING Xuantong (丁玄同), XU Min (许敏), XU Yuhong (许宇鸿), YAO Lianghua (姚良骅), FENG Beibin (冯北滨), ZHU Genliang (朱根良), LIU Wandong (刘万东), DONG Jiaqi (董家齐), YU Deliang (余德良), ZHONG Wulv (钟武律), GAO Jinming (高金明), CHEN Chengyuan (陈程远), YANG Qingwei (杨青巍), DUAN Xuru (段旭如). Comparison of ELM-Filament Mitigation Between Supersonic Molecular Beam Injection and Pellet Injection on HL-2A[J]. Plasma Science and Technology, 2016, 18(2): 120-125. DOI: 10.1088/1009-0630/18/2/04
    [4]CAO Lihua(曹莉华), WANG Huan(王欢), ZHANG Hua(张华), LIU Zhanjun(刘占军), WU Junfeng(吴俊峰), LI Baiwen(李百文). Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma[J]. Plasma Science and Technology, 2014, 16(11): 1007-1012. DOI: 10.1088/1009-0630/16/11/03
    [5]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [6]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [7]SHENG Peng (盛鹏), HU Chundong (胡纯栋), SONG Shihua (宋士花), LIU Zhimin (刘智民), et al. Data Processing Middleware in a High-Powered Neutral Beam Injection Control System[J]. Plasma Science and Technology, 2013, 15(6): 593-598. DOI: 10.1088/1009-0630/15/6/19
    [8]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
    [9]HU Chundong(胡纯栋), NBI Team. Conceptual Design of Neutral Beam Injection System for EAST[J]. Plasma Science and Technology, 2012, 14(6): 567-572. DOI: 10.1088/1009-0630/14/6/30
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
  • Cited by

    Periodical cited type(5)

    1. Zhang, X., Ma, X., Li, M. et al. Preparation of nano-silver electromagnetic interference shielding functional coating on PC+ABS plastic via Ar/H2 mixed atmospheric pressure plasma jet. Plasma Processes and Polymers, 2024, 21(3): 2300129. DOI:10.1002/ppap.202300129
    2. Xiang, H., Yue, X., Chu, Y. et al. Rapid Fabrication of N-, Cu-, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorganic Chemistry, 2024. DOI:10.1021/acs.inorgchem.4c03089
    3. Zeng, Z., Qiao, J., Zhang, R. et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3(4): 582-607. DOI:10.1002/smm2.1118
    4. Chang, J., Zhai, H., Hu, Z. et al. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110269
    5. Zhou, Y., Zhang, J., Xia, G. et al. Preparation of N-doped graphite oxide for supercapacitors by NH3cold plasma. Plasma Science and Technology, 2022, 24(4): 044008. DOI:10.1088/2058-6272/ac48e0

    Other cited types(0)

Catalog

    Figures(9)  /  Tables(1)

    Article views (26) PDF downloads (6) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return