Citation: | Luyun JIANG, Yutong CHEN, Chentao MAO, Jianhui HAN, Anmin CHEN, Jifei YE. Performance optimization of ammonium dinitramide-based liquid propellant in pulsed laser ablation micro-propulsion using LIBS[J]. Plasma Science and Technology, 2025, 27(1): 015503. DOI: 10.1088/2058-6272/ad92f8 |
The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant. This study utilized laser-induced breakdown spectroscopy (LIBS) to investigate the impact of different fuel types, fuel ratios, and laser energies on the plasma parameters of ammonium dinitramide (ADN)-based liquid propellants. Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide (AMIMDCA) as a fuel choice led to higher plasma temperatures compared to methanol (CH3OH) and hydroxyethyl hydrazine nitrate (HEHN) under the same experimental conditions. Optimization of the fuel ratio proved critical, and when the AMIMDCA ratio was 21wt.% the propellants could achieve the best propulsion performance. Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density, thereby improving ablation efficiency. Notably, a combination of 100 mJ laser energy and 21wt.% AMIMDCA fuel produced a strong and stable plasma signal. This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants, providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.
[1] |
Krejci D and Lozano P 2018 Proc. IEEE 106 362 doi: 10.1109/JPROC.2017.2778747
|
[2] |
Phipps C R 2018 Laser ablation propulsion and its applications in space In: Ossi P M Advances in the Application of Lasers in Materials Science Cham: Springer 2018: 217
|
[3] |
Phipps C R et al 2021 Appl. Opt. 60 H1 doi: 10.1364/AO.434245
|
[4] |
Yu H C et al 2018 Opt. Laser Technol. 100 57 doi: 10.1016/j.optlastec.2017.09.052
|
[5] |
Phipps C R, Luke J R and Helgeson W 2008 AIP Conf. Proc. 997 222 doi: 10.1063/1.2931893
|
[6] |
Itouyama N et al 2023 J. Propul. Power 39 416 doi: 10.2514/1.B38880
|
[7] |
Wang Z et al 2021 Combust. Flame 233 111597 doi: 10.1016/j.combustflame.2021.111597
|
[8] |
Golden D M, McMillen D F and Rossi M J 1992 Low Pressure Thermal Decomposition Studies Selected Nitramine and Dinitramine Energetic Materials (ADA247972, SRI International: Menlo Park, CA
|
[9] |
VA T and OA L Y 1994 Synthesis of dinitramide salts In: 25th International Annual Conference of ICT Karlsruhe 1994
|
[10] |
Wingborg N 2006 J. Chem. Eng. Data 51 1582 doi: 10.1021/je0600698
|
[11] |
Wingborg N, Eldsäter C and Skifs H 2004 Formulation and characterization of ADN-based liquid monopropellants In: Proceedings of the 4th International Spacecraft Propulsion Conference, 2nd Propellants for Space Propulsion, 3rd European Workshop on Hydrazine Sardinia: ESA 2004
|
[12] |
Hou Y Y et al 2021 ACS Omega 6 22937 doi: 10.1021/acsomega.1c03591
|
[13] |
Hou Y Y et al 2023 Phys. Fluids 35 117122 doi: 10.1063/5.0172602
|
[14] |
Hou Y Y et al 2024 J. Phys. D: Appl. Phys. 57 145505 doi: 10.1088/1361-6463/ad1b2f
|
[15] |
Li L et al 2024 Chin. J. Aeronaut. 37 229 doi: 10.1016/j.cja.2024.01.012
|
[16] |
Li H M et al 2023 Fuel 344 128142 doi: 10.1016/j.fuel.2023.128142
|
[17] |
Cao J L et al 2023 Acta Astronaut. 204 116 doi: 10.1016/j.actaastro.2022.12.022
|
[18] |
Du B S et al 2023 Micromachines 14 1219 doi: 10.3390/mi14061219
|
[19] |
Wang Q Y, Chen A M and Gao X 2024 J. Anal. At. Spectrom. 39 261 doi: 10.1039/D3JA00345K
|
[20] |
Nicolas G, Mateo M P and Piñon V 2007 J. Anal. At. Spectrom. 22 1244 doi: 10.1039/b704682k
|
[21] |
Hahn D W and Lunden M M 2000 Aerosol Sci. Technol. 33 30 doi: 10.1080/027868200410831
|
[22] |
Wang Z Z et al 2016 Front. Phys. 11 114213 doi: 10.1007/s11467-016-0607-0
|
[23] |
Fontana F F et al 2023 J. Geochem. Explor. 246 107160 doi: 10.1016/j.gexplo.2023.107160
|
[24] |
Xiong G et al 2016 J. Anal. At. Spectrom. 31 482 doi: 10.1039/C5JA00186B
|
[25] |
Wang Q Y et al 2022 J. Anal. At. Spectrom. 37 233 doi: 10.1039/D1JA00415H
|
[26] |
Wan X et al 2021 Anal. Chem. 93 7970 doi: 10.1021/acs.analchem.1c00832
|
[27] |
Harilal S S et al 2018 Appl. Phys. Rev. 5 021301 doi: 10.1063/1.5016053
|
[28] |
Zhao S Y et al 2022 Optik 251 168444 doi: 10.1016/j.ijleo.2021.168444
|
[29] |
He Z Q et al 2023 Plasma Sci. Technol. 25 125504 doi: 10.1088/2058-6272/ace954
|
[30] |
Zheng K X et al 2023 Microw. Opt. Technol. Lett. 65 1248 doi: 10.1002/mop.33323
|
[31] |
Dai Y J et al 2021 Microw. Opt. Technol. Lett. 63 1629 doi: 10.1002/mop.32810
|
[32] |
Chen Y T et al 2024 Opt. Lett. 49 3106 doi: 10.1364/OL.526093
|
[33] |
Tian Y et al 2020 Opt. Express 28 18122 doi: 10.1364/OE.391420
|
[34] |
Xue Y Y et al 2024 Plasma Sources Sci. Technol. 33 065001 doi: 10.1088/1361-6595/ad4ddc
|
[35] |
Xue Y Y et al 2023 Plasma Sci. Technol. 25 085503 doi: 10.1088/2058-6272/acc054
|
[36] |
Chen Y T et al 2024 Spectrochim. Acta Part B: At. Spectrosc. 213 106880 doi: 10.1016/j.sab.2024.106880
|
[37] |
Chen Y T et al 2024 J. Anal. At. Spectrom. 39 1225 doi: 10.1039/D3JA00432E
|
[38] |
Sun D T et al 2022 Plasma Sci. Technol. 24 084008 doi: 10.1088/2058-6272/ac7639
|
[39] |
Wang F Y et al 2021 J. Anal. At. Spectrom. 36 1996 doi: 10.1039/D1JA00186H
|
[40] |
Cristoforetti G et al 2010 Spectrochim. Acta Part B: At. Spectrosc. 65 86 doi: 10.1016/j.sab.2009.11.005
|
[41] |
Zorba V, Mao X L and Russo R E 2015 Spectrochim. Acta Part B: At. Spectrosc. 113 37 doi: 10.1016/j.sab.2015.08.011
|
[42] |
Wang Y et al 2020 Phys. Plasmas 27 023507 doi: 10.1063/1.5131772
|
[43] |
Li K H et al 2016 Appl. Opt. 55 7422 doi: 10.1364/AO.55.007422
|
[44] |
Zhang D et al 2018 Phys. Plasmas 25 083305 doi: 10.1063/1.5045365
|
[45] |
Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic Press
|
[46] |
Zhai C X et al 2024 J. Anal. At. Spectrom. 39 99 doi: 10.1039/D3JA00291H
|
[47] |
Ma P P et al 2020 Plasma Sci. Technol. 22 085502 doi: 10.1088/2058-6272/ab869b
|
[48] |
Negri M et al 2016 Thermal ignition of ADN-based propellants Roma, Italy: Association Aéronautique et Astronautique de France
|
[49] |
Shiota K et al 2019 J. Therm. Anal. Calorim. 138 2615 doi: 10.1007/s10973-019-08557-2
|
[50] |
Li X W et al 2017 J. Phys. D: Appl. Phys. 50 015203 doi: 10.1088/1361-6463/50/1/015203
|
[1] | LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11 |
[2] | HU Jing (胡菁), WANG Xianping (王先平), GAO Yunxia (高云霞), ZHUANG Zhong (庄重), ZHANG Tao (张涛), FANG Qianfeng (方前锋), LIU Changsong (刘长松). Microstructure and Nano-Hardness of 10 MeV Cl-Ion Irradiated T91 Steel[J]. Plasma Science and Technology, 2015, 17(12): 1088-1091. DOI: 10.1088/1009-0630/17/12/19 |
[3] | FAN Hongyu (范红玉), YANG Qi (杨杞), LI Xin (李欣), NI Weiyuan (倪维元), NIU Jinhai (牛金海), LIU Dongping (刘东平). Microscopic Damage of Tungsten and Molybdenum Exposed to Low-Energy Helium Ions[J]. Plasma Science and Technology, 2015, 17(4): 331-336. DOI: 10.1088/1009-0630/17/4/13 |
[4] | HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20 |
[5] | ZHU Yabin(朱亚滨), WANG Zhiguang(王志光), SUN Jianrong(孙建荣), YAO Cunfeng(姚存峰), WEI Kongfang(魏孔芳), GOU Jie(缑洁), MA Yizhun(马艺准), SHEN Tielong(申铁龙), PANG Lilong(庞立龙), SHENG Yanbin. Modification of Optical Band-gap of Si Films after Ion Irradiation[J]. Plasma Science and Technology, 2012, 14(7): 632-635. DOI: 10.1088/1009-0630/14/7/15 |
[6] | ZHENG Yongnan (郑永男), HUANG Qunying (黄群英), PENG Lei (彭蕾), ZUO Yi (左翼), FAN Ping (范平), ZHOU Dongmei (周冬梅), YUAN Daqing (袁大庆), WU Yichan (吴宜灿), ZHU Shengyun (朱升云). Variation of Radiation Damage with Irradiation Temperature and Dose in CLAM Steel[J]. Plasma Science and Technology, 2012, 14(7): 629-631. DOI: 10.1088/1009-0630/14/7/14 |
[7] | JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26 |
[8] | LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384. |
[9] | Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49. |
[10] | LU Dong, LI Wenjian, WU Xin, WANG Jufang, MA Shuang, LIU Qingfang, HE Jinyu, JING Xigang, DING Nan. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae[J]. Plasma Science and Technology, 2010, 12(6): 753-756. |
1. | Ge, W., Cai, G., Qu, C. et al. A new type of plasma irradiation-resistant amorphous TiZrHfTaW refractory multi-component alloy. Acta Materialia, 2025. DOI:10.1016/j.actamat.2025.120822 |