Advanced Search+
Linlin Hu, Qili Huang, Peng Hu, Yongfei Xiang, Tingting Zhuo, Shenggang Gong, Yi Jiang, Dimin Sun, Guowu Ma. Design of a 210 GHz MW-level long-pulse gyrotron for ECRH applicationJ. Plasma Science and Technology. DOI: 10.1088/2058-6272/ae42b0
Citation: Linlin Hu, Qili Huang, Peng Hu, Yongfei Xiang, Tingting Zhuo, Shenggang Gong, Yi Jiang, Dimin Sun, Guowu Ma. Design of a 210 GHz MW-level long-pulse gyrotron for ECRH applicationJ. Plasma Science and Technology. DOI: 10.1088/2058-6272/ae42b0

Design of a 210 GHz MW-level long-pulse gyrotron for ECRH application

  • This paper presents the physical design and simulation of a 210 GHz, megawatt-level, long-pulse gyrotron for electron cyclotron resonance heating (ECRH) in next-generation magnetic confinement fusion devices. The tube utilizes an ultra-high-order TE34,12 mode cavity. Driven by an 80-kV, 40-A electron beam, the nonlinear self-consistent simulation predicts an output power of 1.08 MW with an electronic efficiency of 33.8% and an overall efficiency of 54% with a 30-kV depressed collector. Furthermore, the design and simulation of key components, including a cavity, a quasi-optical mode converter, a triode-type electron gun, combined axial and azimuthal magnetic sweeping coils, and a chemical vapor deposition (CVD) diamond output window are detailed. Thermal analysis of the water-cooled cavity and collector confirms the tube's capability of long-pulse continuous-wave (CW) operation. The results demonstrate that the proposed 210 GHz gyrotron design meets the key technical requirements for next-generation ECRH systems operating above 200 GHz.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return