Advanced Search+
CHEN Zhipeng, LI Hong, LIU Qiuyan, LUO Chen, XIE Jinlin, LIU Wandong. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas[J]. Plasma Science and Technology, 2011, 13(2): 175-180.
Citation: CHEN Zhipeng, LI Hong, LIU Qiuyan, LUO Chen, XIE Jinlin, LIU Wandong. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas[J]. Plasma Science and Technology, 2011, 13(2): 175-180.

A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

Funds: supported by National Natural Science Foundation of China (Nos.10675121, 10705028 and 10605025) and National Basic Research Program of China (No. 2008CB717800).
More Information
  • A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications.
  • Related Articles

    [1]Liuliang HE, Feng HE, Jiting OUYANG. Plasma density enhancement in radio-frequency hollow electrode discharge[J]. Plasma Science and Technology, 2024, 26(4): 044003. DOI: 10.1088/2058-6272/ad273b
    [2]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [3]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [4]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [5]WU Jun (吴军), WU Jian (吴健), XU Zhengwen (许正文). Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere[J]. Plasma Science and Technology, 2016, 18(9): 890-896. DOI: 10.1088/1009-0630/18/9/03
    [6]CAO Xiuquan (曹修全), YU Deping (余德平), XIANG Yong (向勇), YAO Jin (姚进), MIAO Jianguo (苗建国). Influence of the Laminar Plasma Torch Construction on the Jet Characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. DOI: 10.1088/1009-0630/18/7/07
    [7]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [10]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08

Catalog

    Article views (684) PDF downloads (399) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return