Advanced Search+
BI Zhenhua, XU Xiang, LIU Yongxin, JIANG Xiangzhan, LU Wenqi, WANG Younian. Comparison of 2D Hybrid Simulational and Experimental Results for Dual-Frequency Capacitively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2011, 13(2): 181-187.
Citation: BI Zhenhua, XU Xiang, LIU Yongxin, JIANG Xiangzhan, LU Wenqi, WANG Younian. Comparison of 2D Hybrid Simulational and Experimental Results for Dual-Frequency Capacitively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2011, 13(2): 181-187.

Comparison of 2D Hybrid Simulational and Experimental Results for Dual-Frequency Capacitively Coupled Argon Plasmas

Funds: Supported by National Natural Science Foundation of China (No.10635010) and Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090041110026).
More Information
  • A two-dimensional hybrid simulation scheme is proposed to study the characteristics of dual-frequency (DF) capacitively coupled plasma (CCP) discharge based on the geometry of real device. Given the experimental parameters for argon plasma, the output from the fluid module such as ion density, number flux, electron temperature and the Monte-Carlo collision (MCC) results of ion energy distribution function (IEDF) as well as electron energy distribution function (EEDF) are obtained and discussed in detail. A novel complete floating double probe is designed to measure both density and temperature of electron and a quadrupole mass spectrometer is also equipped for IEDF investigations. The measurements on the density of bulk plasma, electron temperature and IEDF agree well, qualitatively, with the simulated results. A comparison with experimental results indicates that, since the structure of real device is taken into account, this model is capable of describing the global dynamic characteristics occurred in DF-CCP and presenting more reliable results than the model with an ideal chamber structure.
  • Related Articles

    [1]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [2]ubao JIN (金福宝), Yuanxiang ZHOU (周远翔), Bin LIANG (梁斌), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵). Effects of temperature on creepage discharge characteristics in oil-impregnated pressboard insulation under combined AC–DC voltage[J]. Plasma Science and Technology, 2019, 21(5): 54002-054002. DOI: 10.1088/2058-6272/aaff01
    [3]Xiang HU (胡翔), Ping DUAN (段萍), Jilei SONG (宋继磊), Wenqing LI (李文庆), Long CHEN (陈龙), Xingyu BIAN (边兴宇). Study on the influences of ionization region material arrangement on Hall thruster channel discharge characteristics[J]. Plasma Science and Technology, 2018, 20(2): 24008-024008. DOI: 10.1088/2058-6272/aa9b87
    [4]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [5]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [6]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [7]A. A. AZOOZ, Sabah I. WAYSI. An Alternative Empirical Formula for Positive Corona Discharge I-V Characteristics in Point-to-Plate Electrode Geometry[J]. Plasma Science and Technology, 2014, 16(3): 211-218. DOI: 10.1088/1009-0630/16/3/07
    [8]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [9]LI Tianming (李天明), Sooseok CHOI, Takayuki WATANABE. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications[J]. Plasma Science and Technology, 2012, 14(12): 1097-1101. DOI: 10.1088/1009-0630/14/12/11
    [10]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08

Catalog

    Article views (816) PDF downloads (325) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return