Advanced Search+
WANG Huihui, LI Hong, WANG Yuhou, LI Bin, YOU Wei, CHEN Zhipeng, XIE Jinlin, LIU Wandong. Monopole Antenna Probe for Density Measurements in Cold Plasmas[J]. Plasma Science and Technology, 2011, 13(2): 197-200.
Citation: WANG Huihui, LI Hong, WANG Yuhou, LI Bin, YOU Wei, CHEN Zhipeng, XIE Jinlin, LIU Wandong. Monopole Antenna Probe for Density Measurements in Cold Plasmas[J]. Plasma Science and Technology, 2011, 13(2): 197-200.

Monopole Antenna Probe for Density Measurements in Cold Plasmas

Funds: supported by National Natural Science Foundation of China (Nos. 10705028, 10835009) and National Basic Research Program of China (No. 2008CB717800).
More Information
  • A simple diagnostic tool for density measurements in plasma with a certain spatial resolution is proposed in the this paper. It uses the emission characteristics of monopole antenna to determine the dielectic property of plasma ε=1-ƒp22, with ƒpthe electron plasma frequency related to plasma density. We immersed a monopole antenna probe into plasma and introduced a microwave signal via a network analyzer. When the emitted power is maximized, the reflected power is minimized and there occurs a resonance. Since ε can be derived from the resonant frequency, this is actually a method to measure the absolute electron density. Validated by a comparison with the amended Langmuir double-probe method, the monopole antenna probe is valuable. In addition, it is free from the difficulties, such as fluctuation in plasma potential.
  • Related Articles

    [1]Chao YE. Characteristics of radio-frequency magnetron sputtering with Ag target operated near the electron series resonance oscillation[J]. Plasma Science and Technology, 2025, 27(3): 035506. DOI: 10.1088/2058-6272/ada21f
    [2]Shuichi SATO, Hiromu KAWANA, Tatsushi FUJIMINE, Mikio OHUCHI. Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods[J]. Plasma Science and Technology, 2018, 20(8): 85405-085405. DOI: 10.1088/2058-6272/aabfcd
    [3]Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
    [4]BAI Yujing (白玉静), LI Jianquan (李建泉), XU Jun (徐军), LU Wenqi (陆文琪), WANG Younian (王友年), DING Wanyu (丁万昱 ). Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density[J]. Plasma Science and Technology, 2016, 18(1): 58-61. DOI: 10.1088/1009-0630/18/1/10
    [5]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [6]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [7]Kenji SAITO, Ryuhei KUMAZAWA, Tetsuo SEKI, Hiroshi KASAHARA, Goro NOMURA, et al. Measurement of Ion Cyclotron Emissions by Using High-Frequency Magnetic Probes in the LHD[J]. Plasma Science and Technology, 2013, 15(3): 209-212. DOI: 10.1088/1009-0630/15/3/03
    [8]TANG Enling (唐恩凌), XIANG Shenghai (相升海), YANG Minghai (杨明海), LI Lexin (李乐新). Sweep Langmuir Probe and Triple Probe Diagnostics for Transient Plasma Produced by Hypervelocity Impact[J]. Plasma Science and Technology, 2012, 14(8): 747-753. DOI: 10.1088/1009-0630/14/8/12
    [9]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
    [10]HUANG Hongwei (黄宏伟), YE Chao (叶超), XU Yijun (徐轶君), YUAN Yuan (袁圆), SHI Guofeng (施国峰), NING Zhaoyuan (宁兆元). Effect of Low-frequency Power on F, CF2 Relative Density and F/CF2 Ratio in Fluorocarbon Dual-Frequency Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 566-570.

Catalog

    Article views (789) PDF downloads (340) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return