Advanced Search+
LI Xuechen, NIU Dongying, JIA Pengying, ZHAO Na, YUAN Ning. Investigation on the Micro-Discharge Characteristics of Dielectric Barrier Discharge in a Needle-Plate Geometry[J]. Plasma Science and Technology, 2011, 13(2): 213-216.
Citation: LI Xuechen, NIU Dongying, JIA Pengying, ZHAO Na, YUAN Ning. Investigation on the Micro-Discharge Characteristics of Dielectric Barrier Discharge in a Needle-Plate Geometry[J]. Plasma Science and Technology, 2011, 13(2): 213-216.

Investigation on the Micro-Discharge Characteristics of Dielectric Barrier Discharge in a Needle-Plate Geometry

Funds: supported by National Natural Science Foundation of China (Grant No. 10805013), the National Natural Science Foundation of Hebei Province, China (Grant No. A2009000149), the Key Project of Chinese Ministry of Education.(No. 210014).
More Information
  • In this study, a dielectric barrier discharge device with needle-plate electrodes was used to investigate the characteristics of the micro-discharge in argon at one atmospheric pressure by an optical method. The results show that there are two discharge modes in the dielectric barrier discharge, namely corona mode and filamentary mode. The corona discharge only occurs in the vicinity of the needle tip when the applied voltage is very low. However, the filamentary discharge mode can occur, and micro-discharge bridges the two electrodes when the applied voltage reaches a certain value. The extended area of micro-discharge on the dielectric plate becomes larger with the increase in applied voltage or decrease in gas pressure. The variance of the light emission waveforms is studied as a function of the applied voltage. Results show that very short discharge pulse only appears at the negative half cycle of the applied voltage in the corona discharge mode. However, broad hump (about several microseconds) can be discerned at both the negative half cycle and the positive half cycle for a high voltage in the filamentary mode. Furthermore, the inception voltage decreases and the width of the discharge hump increases with the increase in applied voltage. These experimental phenomena can be explained qualitatively by analyzing the discharge mechanism.
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [3]CHEN Juanjuan (陈娟娟), ZHANG Tianping (张天平), GENG Hai (耿海), JIA Yanhui (贾艳辉), MENG Wei (孟伟), WU Xianming (吴先明), SUN Anbang (孙安邦). Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments[J]. Plasma Science and Technology, 2016, 18(6): 611-616. DOI: 10.1088/1009-0630/18/6/06
    [4]LI Jun (黎俊), XU Weiwei (徐薇薇), SONG Yuntao (宋云涛), LU Mingxuan (鲁明宣). Numerical Simulation Approaches to Evaluating the Electromagnetic Loads on the EAST Vacuum Vessel[J]. Plasma Science and Technology, 2013, 15(12): 1241-1246. DOI: 10.1088/1009-0630/15/12/15
    [5]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [6]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [7]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [8]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
    [9]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [10]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.

Catalog

    Article views (836) PDF downloads (374) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return