Advanced Search+
LI Yingying, FU Jia, SHI Yuejiang, WANG Fudi, ZHANG Wei, TI Ang, XU Ping, HUANG Yiyu. Investigation of Ion Temperature Characteristics in the HT-7 Tokamak[J]. Plasma Science and Technology, 2011, 13(5): 535-540.
Citation: LI Yingying, FU Jia, SHI Yuejiang, WANG Fudi, ZHANG Wei, TI Ang, XU Ping, HUANG Yiyu. Investigation of Ion Temperature Characteristics in the HT-7 Tokamak[J]. Plasma Science and Technology, 2011, 13(5): 535-540.

Investigation of Ion Temperature Characteristics in the HT-7 Tokamak

Funds: supported by the Instruments R&D Project of the Chinese Academy of Sciences (title: Active Beam Spectra Diagnostic), partially supported by National Natural Science Foundation of China ( Nos. 10725523, 10975155), the ITER Relevant Foundation in China _ (No. 2009GB104003).
More Information
  • Received Date: January 10, 2011
  • Characteristics of ion temperature measured with Charge-Exchange Recombination Spectroscopy (CXRS) were studied in Ohmic, Lower-Hybrid-Wave (LHW) driven and Ion-Cyclotron-Resonance-Frequency (ICRF) heated plasmas in HT-7. The results indicate that the central ion temperature Ti0 follows the one-third power law in the product of central line-averaged density`ne and plasma current Ip in Ohmic discharges and is therefore consistent with the Artsimovich scaling law Ti0= K× (Ip×Bt×`ne ×R2)1/3. It is shown that there is an appreciable increase of ion temperature during the operation with both LHW and ICRF and that the increment of ion temperature in those shots is mainly due to the energy transfer via collisions between ions and electrons rather that by direct heating of the ions.
  • Related Articles

    [1]H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1
    [2]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [3]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [4]LI Xuechen (李雪辰), ZHAO Huanhuan (赵欢欢), JIA Pengying (贾鹏英). Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(11): 1149-1153. DOI: 10.1088/1009-0630/15/11/13
    [5]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [6]LIU Zhongwei (刘忠伟), YANG Lizhen (杨丽珍), WANG Zhengduo (王正铎), et al.. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon[J]. Plasma Science and Technology, 2013, 15(9): 871-874. DOI: 10.1088/1009-0630/15/9/07
    [7]TAO Xiaoping (陶小平), LI Meng (李蒙), LI Hui (李辉), DONG Hai (董海). Experimental Study of ZnO-Coated Alumina DBD in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(8): 787-790. DOI: 10.1088/1009-0630/15/8/13
    [8]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08

Catalog

    Article views (794) PDF downloads (521) Cited by()