Advanced Search+
WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
Citation: WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.

Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge

Funds: supported by the National Basic Research Program of China 973 Program (Grant No 2009GB107004)
More Information
  • Received Date: October 28, 2010
  • Optical emission spectroscopy and Langmuir Probe diagnostics were incorpoarted into the experiment, in which dust particles were formed in-situ by using reactive mixture gases (SiH4/C2H4/Ar) in a radio-frequency (RF) discharge plasma. The excitation temperature was first calculated by combining several optical emission spectra of argon lines and using a Boltzmann distribution to fit the experimental data, then the excitation temperature as functions of both gas pressure and RF power in SiH4/C2H4 /Ar discharges for different discharge conditions were obtained. Correspondingly, based on the measurement of the electron temperature by a Langmuir probe, the excitation temperature was compared with the electron temperature, and some discussions were presented. Finally the emission intensities of spectral lines of Si 390.6 nm, Si2+ 380.6 nm and C+ 426.7 nm were measured and presented as functions of pressure, RF power and flow rate of SiH4/C2H4.
  • Related Articles

    [1]Lunjiang CHEN (陈伦江), Wenbo CHEN (陈文波), Chuandong LIU (刘川东), Honghui TONG (童洪辉), Qing ZHAO (赵青). Estimation of plasma parameters in the process of micro-scale powder plastic and characteristics of its products[J]. Plasma Science and Technology, 2019, 21(7): 74006-074006. DOI: 10.1088/2058-6272/ab00ac
    [2]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [3]ZHANG Jiahui (张家辉), LIU Juanjuan (刘娟娟), ZHANG Renxi (张仁熙), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Yi (张益). Destruction of Gaseous Styrene with a Low-Temperature Plasma Induced by a Tubular Multilayer Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2015, 17(1): 50-55. DOI: 10.1088/1009-0630/17/1/10
    [4]S. SHAHIDI, M. GHORANNEVISS. Sterilization of Cotton Fabrics Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(10): 1031-1033. DOI: 10.1088/1009-0630/15/10/13
    [5]V. PRYSIAZHNYI. Plasma Treatment of Aluminum Using a Surface Barrier Discharge Operated in Air and Nitrogen: Parameter Optimization and Related Effects[J]. Plasma Science and Technology, 2013, 15(8): 794-799. DOI: 10.1088/1009-0630/15/8/15
    [6]A. N. KLEIN, R. P. CARDOSO, H. C. PAVANATI, C. BINDER, A. M. MALISKA, G. HAMMES, D. FUS~AO, A. SEEBER, et al. DC Plasma Technology Applied to Powder Metallurgy: an Overview[J]. Plasma Science and Technology, 2013, 15(1): 70-81. DOI: 10.1088/1009-0630/15/1/12
    [7]LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09
    [8]FANG Shidong, MENG Yuedong, SHEN Jie, CONG Jie. Surface Treatment of Polypropylene Powders Using a Plasma Reactor with a Stirrer[J]. Plasma Science and Technology, 2011, 13(2): 217-222.
    [9]LAN Yan, YOU Qingliang, CHENG Cheng, ZHANG Suzhen, NI Guohua, M. NAGATSU, MENG Yuedong. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(1): 88-92.
    [10]HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580.

Catalog

    Article views (903) PDF downloads (492) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return