Advanced Search+
YANG Guoqing, ZHANG Guanjun, ZHANG Wenyuan. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-thermal Plasma Treatment in Atmospheric Air[J]. Plasma Science and Technology, 2011, 13(5): 617-622.
Citation: YANG Guoqing, ZHANG Guanjun, ZHANG Wenyuan. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-thermal Plasma Treatment in Atmospheric Air[J]. Plasma Science and Technology, 2011, 13(5): 617-622.

Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-thermal Plasma Treatment in Atmospheric Air

Funds: supported by the Science Foundation for the Excellent Doctor Dissertation of Ministry of Education Of China (No.20338) and the State Natural Sciences Foundation of China(Nos. 50937004,50777051)
More Information
  • Received Date: September 15, 2010
  • Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an ac source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.
  • Related Articles

    [1]YUAN Hongwen (袁红文), FU Peng (傅鹏), GAO Ge (高格), HUANG Liansheng (黄连生), SONG Zhiquan (宋执权), HE Shiying (何诗英), WU Yanan (吴亚楠), DONG Lin (董琳), WANG Min (王敏), FANG Tongzhen (房同珍). On the Sequential Control of ITER Poloidal Field Converters for Reactive Power Reduction[J]. Plasma Science and Technology, 2014, 16(12): 1147-1152. DOI: 10.1088/1009-0630/16/12/11
    [2]ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14
    [3]HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13
    [4]WU Jinglin(吴景林), LONG Jiaojiao(龙佼佼), LIU Xiaoning(刘小宁). Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert[J]. Plasma Science and Technology, 2014, 16(9): 890-896. DOI: 10.1088/1009-0630/16/9/15
    [5]HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22
    [6]MA Wendong(马文东), SHAN Jiafang(单家方), XU Handong(徐旵东), HU Huaichuan(胡怀传), WANG Mao(王茂), WU Zege(吴则格). Power Control and Data Acquisition System for High Power Microwave Test Bench[J]. Plasma Science and Technology, 2014, 16(4): 415-419. DOI: 10.1088/1009-0630/16/4/21
    [7]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [8]K. SHIMADA, T. TERAKADO, K. YAMAUCHI, M. MATSUKAWA, O. BAULAIGUE, R. COLETTI, A. COLETTI, L. NOVELLO. Minimization of Reactive Power Fluctuation in JT-60SA Magnet Power Supply[J]. Plasma Science and Technology, 2013, 15(2): 184-187. DOI: 10.1088/1009-0630/15/2/22
    [9]ZHU Zhe (朱哲), ZHU Yinfeng (朱银锋), HUANG Ronglin (黄荣林), FU Peng (傅鹏), DING Yixiao(丁逸骁). Study on the Current-sharing Control System of the TF Power Supply for a Superconducting Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 941-946. DOI: 10.1088/1009-0630/14/10/16
    [10]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14

Catalog

    Article views (1046) PDF downloads (643) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return