• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions

  • Abstract: In the present work, the irradiation hardening behavior of a Chinese low-activation ferritic/ martensitic steel CLF-1, a candidate for fusion reactor blankets, is studied. Specimens were irradiated with high-energy 14N and 56Fe ions at the terminal of a cyclotron to three successively increasing damage levels of 0.05, 0.1 and 0.2 displacements per atom (dpa) at about −50 °C. The energy of the incident ions was dispersed to 11 successively decreasing grades using an energy degrader, thereby generating an atomic displacement damage plateau in the specimens from the surface to a depth of 25 μm, which is sufficiently broad for the Vickers hardness test. Eight different loads (i.e. 98 mN, 196 mN, 490 mN, 980 mN, 1.96 N, 4.9 N, 9.8 N and 19.6 N) were applied to the specimens to obtain the depth profiles of the Vickers hardness by using a microhardness tester. Hardening was observable at the lowest damage level, and increased with increasing irradiation dose. A power-law correlation of the Vickers hardness with the damage level (HV0=1.49+0.76 dpa0.31) is proposed. Testing with a nano-indentation technique was also performed, and a linear relationship between the Vickers micro-hardness and the nanohardness (HV0=0.83H0) was observed. A comparison with other RAFM steels (CLAM, JLF-1, F82H, EUROFER97 etc.) under neutron or charged particle irradiation conditions shows that most of the RAFM steels exhibit similar power-law exponents in the dose dependence of irradiation hardening. The difference in the irradiation hardening may be attributed to differences in microstructure prior to irradiation.

     

/

返回文章
返回