• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement

Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement

  • Abstract: Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air. It is attributed to the compression of plasma plume by the reflected shockwave. In addition, optical emission spectroscopy of laser-induced plasma can also be affected by the distance between lens and sample surface. In order to obtain the optimized spectral intensity, the distance must be considered. In this work, spatially confined laser-induced silicon plasma by using a Nd: YAG nanosecond laser at different distances between lens and sample surface was investigated. The laser energies were 12 mJ, 16 mJ, 20 mJ, and 24 mJ. All experiments were carried out in an atmospheric environment. The results indicated that the intensity of Si (I) 390.55 nm line firstly rose and then dropped with the increase of lens-to-sample distance. Moreover, the spectral peak intensity with spatial confinement was higher than that without spatial confinement. The enhancement ratio was approximately 2 when laser energy was 24 mJ.

     

/

返回文章
返回