• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies

Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies

  • Abstract: The high magnetic field helicon experiment system is a helicon wave plasma (HWP) source device in a high axial magnetic field ( B0 ) developed for plasma–wall interactions studies for fusion reactors. This HWP was realized at low pressure (5 × 10−3 − 10 Pa) and a RF (radio frequency, 13.56 MHz) power (maximum power of 2 kW) using an internal right helical antenna (5 cm in diameter by 18 cm long) with a maximum B 0 of 6300 G. Ar HWP with electron density ~1018–1020 m−3 and electron temperature ~4–7 eV was produced at high B0 of 5100 G, with an RF power of 1500 W. Maximum Ar+ ion flux of 7.8 × 1023 m−2 s−1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias. Plasma energy and mass spectrometer studies indicate that Ar+ ion-beams of 40.1 eV are formed, which are supersonic (~3.1c s). The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry. And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1 × 1024 N2/m2h.

     

/

返回文章
返回