• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device

Shengjie ZHU (朱圣洁), Amin ZHOU (周阿敏), Feng YU (于锋), Bin DAI (代斌), Cunhua MA (马存花)

Shengjie ZHU (朱圣洁), Amin ZHOU (周阿敏), Feng YU (于锋), Bin DAI (代斌), Cunhua MA (马存花). Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device[J]. Plasma Science and Technology, 2019, 21(8): 85504-085504. DOI: 10.1088/2058-6272/ab15e5
Citation: Shengjie ZHU (朱圣洁), Amin ZHOU (周阿敏), Feng YU (于锋), Bin DAI (代斌), Cunhua MA (马存花). Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device[J]. Plasma Science and Technology, 2019, 21(8): 85504-085504. DOI: 10.1088/2058-6272/ab15e5

Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device

Funds: This work was financially supported by the National Natural Science Foundation of China (No. 21663022).
  • Abstract: A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2. The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition. It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2. The maximum CO2 decomposition rates of 48.6% and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.
  • [1]

    Andrea A et al 2017 Chem. Rev. 117 9804

    [2]

    Snoeckx R and Bogaerts A 2017 Chem. Soc. Rev. 46 5805

    [3]

    Ozkan A et al 2016 Plasma Sources Sci. Technol. 25 025013

    [4]

    Liu P et al 2019 Plasma Sci. Technol. 21 012001

    [5]

    Zhou A M et al 2018 Catalysts 8 256

    [6]

    Tu X et al 2011 J. Phys. D Appl. Phys. 44 274007

    [7]

    Tu X and Whitehead J C 2012 Appl. Catal. B Environ. 125 439

    [8]

    Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011

    [9]

    Zhao D et al 2018 Plasma Sci. Technol. 20 014020

    [10]

    Kogelschatz U 2003 Plasma Chem. Plasma Process 23 1

    [11]

    Wang S et al 2012 Plasma Chem. Plasma Process. 32 979

    [12]

    Yu Q Q et al 2012 Plasma Chem. Plasma Process. 32 153

    [13]

    Mei D H et al 2016 Appl. Catal. B Environ. 182 525

    [14]

    Duan X F et al 2015 AIChE J. 61 898

    [15]

    van Laer K and Bogaerts A 2015 Energy Technol. 3 1038

    [16]

    Zhou A M et al 2017 Greenhouse Gases Sci. Technol. 7 721

    [17]

    Mei D H and Tu X 2017 J. CO2 Util. 19 68

    [18]

    Zhang K et al 2017 Ind. Eng. Chem. Res. 56 3204

    [19]

    Wang S G et al 2005 J. Phys. Chem. B 109 18956

    [20]

    Mori S, Yamamoto A and Suzuki M 2006 Plasma Sources Sci. Technol. 15 609

    [21]

    Horváth G, Skalný J D and Mason N J 2008 J. Phys. D Appl. Phys. 41 225207

    [22]

    Yamamoto A, Mori S and Suzuki M 2007 Thin Solid Films 515 4296

    [23]

    van Durme J et al 2008 Appl. Catal. B Environ. 78 324

    [24]

    Ray D, Saha R and Ch S 2017 Catalysts 7 244

    [25]

    Patil B S et al 2016 Appl. Catal. B Environ. 194 123

    [26]

    Mei D H et al 2016 Plasma Process. Polym. 13 544

    [27]

    Bogaerts A et al 2015 Faraday Discuss. 183 217

    [28]

    Ozkan A, Bogaerts A and Reniers F 2017 J. Phys. D Appl. Phys. 50 084004

    [29]

    Valdivia-Barrientos R et al 2006 Plasma Sources Sci. Technol. 15 237

    [30]

    Jiang W M et al 2014 Appl. Phys. Lett. 104 013505

    [31]

    Aerts R, Snoeckx R and Bogaerts A 2014 Plasma Process. Polym. 11 985

    [32]

    Paulussen S et al 2010 Plasma Sources Sci. Technol. 19 034015

    [33]

    Aerts R, Somers W and Bogaerts A 2015 Chem. Sus. Chem. 8 702

    [34]

    Belov I, Paulussen S and Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015023

    [35]

    Butterworth T, Elder R and Allen R 2016 Chem. Eng. J. 293 55

  • 期刊类型引用(28)

    1. He, L., Yue, X., Liu, X. et al. Performance of CO2 decomposition in water-cooling DBD plasma reactor. Journal of Physics D: Applied Physics, 2025, 58(10): 105204. 必应学术
    2. Kuo, H.-H., Liu, C.-Y., Wei, Y.-C. et al. Effective CO2 Decomposition in a Nonthermal Atmospheric Pressure Plasma Jet System Coupled with CuO Catalysts. Advanced Energy and Sustainability Research, 2025. 必应学术
    3. Zhang, B., Zuo, H., Wu, B. et al. Recent progress in CO2 splitting processes with non-thermal plasma-assisted. Journal of Environmental Chemical Engineering, 2024, 12(6): 114692. 必应学术
    4. Cheng, H., Lei, X., Zhang, W. et al. Study on the Low-temperature Plasma Conversion of CO2 and Decomposition Mechanism | [低温等离子体转化 CO2 及分解机理研究]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(11): 5206-5218. 百度学术
    5. Fulham, G.J., Gebers, J.C., Marek, E.J. Application of Copper-Based Catalysts and Strontium Ferrite as Bed Materials for Plasma-Driven CO2 Splitting. Energy and Fuels, 2024, 38(21): 20939-20950. 必应学术
    6. Masumbuko, R.K., Kobayashi, N., Itaya, Y. et al. Enhanced methanol selectivity and synthesis in a non-catalytic dielectric barrier discharge (DBD) plasma reactor. Chemical Engineering Science, 2024. 必应学术
    7. Luo, Y., Yue, X., Zhang, H. et al. Recent advances in energy efficiency optimization methods for plasma CO2 conversion. Science of the Total Environment, 2024. 必应学术
    8. Khunda, D., Li, S., Cherkasov, N. et al. Scaling Down the Great Egypt Pyramids to Enhance CO2 Splitting in a Micro DBD Reactor. Plasma Chemistry and Plasma Processing, 2023, 43(6): 2017-2034. 必应学术
    9. Bogaerts, A., Centi, G., Hessel, V. et al. Challenges in unconventional catalysis. Catalysis Today, 2023. 必应学术
    10. Vertongen, R., Bogaerts, A. How important is reactor design for CO2 conversion in warm plasmas?. Journal of CO2 Utilization, 2023. 必应学术
    11. Zhang, Z., Ding, H., Zhou, Q. et al. Research progress and the prospect of CO2 hydrogenation with dielectric barrier discharge plasma technology. Carbon Letters, 2023, 33(4): 973-987. 必应学术
    12. Khunda, D., Li, S., Cherkasov, N. et al. Effect of temperature on the CO2 splitting rate in a DBD microreactor. Reaction Chemistry and Engineering, 2023, 8(9): 2223-2233. 必应学术
    13. Liu, C.-Y., Wang, H.-X., Wang, C. et al. Experimental study of the effect of dielectric materials on the decomposition of carbon dioxide in a dielectric barrier discharge. Plasma Sources Science and Technology, 2023, 32(2): 025011. 必应学术
    14. Wang, J., Wang, X., AlQahtani, M.S. et al. Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation. Chemical Engineering Journal, 2023. 必应学术
    15. Xia, M., Ding, W., Shen, C. et al. CeO2-Enhanced CO2Decomposition via Frosted Dielectric Barrier Discharge Plasma. Industrial and Engineering Chemistry Research, 2022, 61(29): 10455-10460. 必应学术
    16. Ding, W., Xia, M., Shen, C. et al. Enhanced CO2conversion by frosted dielectric surface with ZrO2coating in a dielectric barrier discharge reactor. Journal of CO2 Utilization, 2022. 必应学术
    17. Golubev, O.V., Maksimov, A.L. Plasma-Assisted Catalytic Decomposition of Carbon Dioxide. Russian Journal of Applied Chemistry, 2022, 95(5): 617-630. 必应学术
    18. Li, Y., Yuan, H., Zhou, X. et al. Degradation of Benzene Using Dielectric Barrier Discharge Plasma Combined with Transition Metal Oxide Catalyst in Air. Catalysts, 2022, 12(2): 203. 必应学术
    19. Wang, B., Li, X., Wang, X. et al. Effect of N2 and Ar on CO2 conversion with segmented micro-plasma reactor. Waste Disposal and Sustainable Energy, 2021, 3(4): 325-337. 必应学术
    20. Diono, W., Machmudah, S., Kanda, H. et al. Pulsed Discharge Plasma in High-Pressure Environment for Water Pollutant Degradation and Nanoparticle Synthesis. Plasma, 2021, 4(2): 309-331. 必应学术
    21. Wang, B., Wang, X., Zhang, B. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2. Frontiers of Chemical Science and Engineering, 2021, 15(3): 687-697. 必应学术
    22. ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. 必应学术
    23. Li, J., Zhu, S., Lu, K. et al. CO2 conversion in a coaxial dielectric barrier discharge plasma reactor in the presence of mixed ZrO2-CeO2. Journal of Environmental Chemical Engineering, 2021, 9(1): 104654. 必应学术
    24. Bogaerts, A., Tu, X., Whitehead, J.C. et al. The 2020 plasma catalysis roadmap. Journal of Physics D: Applied Physics, 2020, 53(44): 443001. 必应学术
    25. Wang, B., Wang, X., Su, H. Influence of Electrode Interval and Barrier Thickness in the Segmented Electrode Micro-plasma DBD Reactor on CO2 Decomposition. Plasma Chemistry and Plasma Processing, 2020, 40(5): 1189-1206. 必应学术
    26. Zhao, P., Gu, J., Wang, H. et al. How bead shapes affect the plasma streamer characteristics in packed-bed dielectric barrier discharges: A kinetic modeling study. Plasma Science and Technology, 2020, 22(3): 034013. 必应学术
    27. Li, J., Zhai, X., Ma, C. et al. DBD plasma combined with different foam metal electrodes for CO2 decomposition: Experimental results and DFT validations. Nanomaterials, 2019, 9(11): 1595. 必应学术
    28. Li, J., Ma, C., Zhu, S. et al. A review of recent advances of dielectric barrier discharge plasma in catalysis. Nanomaterials, 2019, 9(10): 1428. 必应学术

    其他类型引用(0)

计量
  • 文章访问数:  188
  • HTML全文浏览量:  0
  • PDF下载量:  200
  • 被引次数: 28
出版历程
  • 收稿日期:  2018-12-23
  • 修回日期:  2019-04-01
  • 录用日期:  2019-04-03

目录

    /

    返回文章
    返回