Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst
-
Abstract: An efficient toluene removal in air using a plasma photocatalytic system (PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma, but also requires the photocatalysts to efficiently absorb light emitted from the discharge for driving the photocatalytic reactions. We report here that the PPS constructed by integrating a black titania (B-TiO2) photocatalyst with a dielectric barrier discharge (DBD) can effectively remove toluene with above 70% CO2 selectivity and remarkably reduced the concentration of secondary pollutants of ozone and nitrogen oxides at a specific energy input of 1500 J·l−1, while exhibiting good stability. Photocatalyst characterizations suggest that the B-TiO2 provides a high concentration of oxygen vacancies for the surface oxidation of toluene in DBD, and efficiently absorbs ultraviolet–visible light emitted from the discharge to induce plasma photocatalytic oxidation of toluene. The presence of B-TiO2 in the plasma region also results in a high discharge efficiency, facilitating the generation of large numbers of reactive species and thus the oxidation of toluene towards CO2. The greatly enhanced performance of the PPS integrated with B-TiO2 in toluene removal offers a promising approach to efficiently remove refractory volatile organic compounds from air at low temperatures.
-
-
[1] Van Durme J et al 2008 Appl. Catal. B: Environ. 78 324
[2] Chen H L et al 2008 Appl. Catal. B: Environ. 85 1
[3] Tu X and Whitehead J C 2012 Appl. Catal. B: Environ.125 439
[4] Wu J L et al 2013 Plasma Chem. Plasma Process. 33 1073
[5] Wang J T et al 2016 Plasma Sci. Technol. 18 370
[6] Chen H L et al 2009 Environ. Sci. Technol. 43 2216
[7] Huang H B et al 2007 Plasma Chem. Plasma Process. 27 577
[8] Ochiai T et al 2012 Chem. Eng. J. 209 313
[9] Wang H J and Chen X Y 2011 J. Hazard. Mater. 186 1888
[10] Deng X Q et al 2016 Appl. Catal. B: Environ. 188 48
[11] Sun Z G et al 2018 Plasma Process. Polym. 15 1800095
[12] Liu X Y et al 2016 Adv. Energy Mater. 6 1600452
[13] Yang C Y et al 2013 J. Am. Chem. Soc. 135 17831
[14] Li X S et al 2019 Catal. Today (https://doi.org/10.1016/j.cattod.2019.03.033)
[15] Sun Z G et al 2019 J. Catal. 375 380
[16] Deng X Q et al 2017 Catal. Today 281 630
[17] Fan X et al 2009 Chemosphere 75 1301
[18] Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
[19] Ráhel J and Sherman D M 2005 J. Phys. D: Appl. Phys. 38 547
[20] Li M et al 2018 Plasma Chem. Plasma Process. 38 1063
[21] Li M et al 2019 Appl. Phys. Lett. 114 114102
[22] Wang Z et al 2013 Energy Environ. Sci. 6 3007
[23] Wang Z et al 2013 Adv. Funct. Mater. 23 5444
[24] Zhu B et al 2017 Top. Catal. 60 914
[25] Zhu B et al 2015 Appl. Catal. B: Environ. 179 69
[26] Zhu B et al 2018 Plasma Process. Polym. 15 1700215
[27] Zhao D Z et al 2011 Chem. Eng. Sci. 66 3922
[28] Fan H Y et al 2012 Appl. Catal. B: Environ. 119–120 49
[29] Xu X X et al 2016 Chem. Eng. J. 283 276
-
期刊类型引用(19)
1. Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024. 必应学术
2. Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. 百度学术
3. Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. 必应学术
4. Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118. 必应学术
5. Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. 必应学术
6. Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. 必应学术
7. Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. 必应学术
8. Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. 必应学术
9. Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. 必应学术
10. Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. 必应学术
11. Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. 必应学术
12. Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. 百度学术
13. Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. 必应学术
14. Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. 必应学术
15. Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. 必应学术
16. Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. 必应学术
17. ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. 必应学术
18. Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. 必应学术
19. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. 必应学术
其他类型引用(0)
计量
- 文章访问数: 166
- HTML全文浏览量: 0
- PDF下载量: 168
- 被引次数: 19