• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz

Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz

  • 摘要: Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, used as an actinometer, is mixed with nitrogen. In order to normalize the changes in the excitation cross section and electron energy distribution function at different operational conditions, the Ar-I emission line at 419.83 nm is used, which is of nearly the same excitation efficiency coefficients as that of the nitrogen emission line at 493.51 nm. It is observed that the emission intensity of the selected argon and atomic nitrogen lines increases with both pressure and RF power, as does the nitrogen atomic density.

     

    Abstract: Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, used as an actinometer, is mixed with nitrogen. In order to normalize the changes in the excitation cross section and electron energy distribution function at different operational conditions, the Ar-I emission line at 419.83 nm is used, which is of nearly the same excitation efficiency coefficients as that of the nitrogen emission line at 493.51 nm. It is observed that the emission intensity of the selected argon and atomic nitrogen lines increases with both pressure and RF power, as does the nitrogen atomic density.

     

/

返回文章
返回