• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于PIC-MCC的真空中高功率微波下介质表面倍增放电的仿真研究

PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum

  • 摘要: 为了深入研究真空中高功率微波下介质表面倍增放电的物理机制, 本文基于Particle-in-cell(PIC)和蒙特卡洛(MC)建立了真空中高功率微波下介质表面电子运动的仿真模型。该模型考虑了微波电磁场和由表面电荷引起的静电场对电子运动的影响, 同时充分考虑了二次电子从介质表面出射的初始速度和角度的分布规律。通过仿真, 获得了复合场激励下介质表面电子运动的轨迹, 并分析了电子出射角度和微波电场参数对出射电子运动状态的影响。仿真结果发现, 电子的初始出射角度直接决定着电子的运动状态, 出射角度不同, 电子运动存在着明显的差异;随着微波电场幅值的增加, 电子返回介质表面的撞击能量增加, 电子返回时间减小;随着微波电场相位的变化, 电子撞击能量和返回时间都呈现明显的周期性震荡;倍增放电过程中, 随着时间的推移, 电子数量和表面静电场也都呈现明显的周期性震荡, 且震荡的频率为施加微波频率的两倍, 并从根本上解释了其原因。

     

    Abstract: In order to understand the physical mechanism of multipactor discharge on dielectric window surface under High Power Microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-in-cell (PIC) Monte Carlo (MC) is built in this paper. The influences of microwave electromagnetic field and electrostatic field from dielectric surface charging are simultaneously considered in this model. During the simulation, the emission velocity and angle distribution of secondary electrons from the dielectric surface are taken into account. The movement trajectories of electron clusters under complex field excitation are obtained. The influences of emergence angle and microwave electromagnetic parameters on the electron movement are analyzed. It is found that the emergence angle of electrons from the surface has significant effect on its movement, and both the impact energy and return time of electrons oscillate periodically with the phase of microwave field. The number of secondary electrons and induced electrostatic field from multipactoring are also investigated. The results reveal that both values oscillate periodically at twice the microwave frequency, which is due to the electron impact energy oscillating with microwave period. A schematic diagram is proposed to explain the periodical oscillation phenomena.

     

/

返回文章
返回