Advanced Search+
HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04
Citation: HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04

Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas

Funds: supported in part by the NSFC (Nos. 10734130, 10925421, and 11075105), the National Basic Research Program of China (Nos. 2007CB310406, 2009GB105002).
More Information
  • Received Date: June 14, 2011
  • A wakefield driven by a short intense laser pulse in a perpendicularly magnetized underdense plasma is studied analytically and numerically for both weakly relativistic and highly relativistic situations. Owing to the DC magnetic field, a transverse component of the electric fields associated with the wakefield appears, while the longitudinal wave is not greatly affected by the magnetic field up to 22 Tesla. Moreover, the scaling law of the transverse field versus the longitudinal field is derived. One-dimensional particle-in-cell simulation results confirm the analytical results. Wakefield transmission through the plasma-vacuum boundary, where electromagnetic emission into vacuum occurs, is also investigated numerically. These results are useful for the generation of terahertz radiation and the diagnosis of laser wakefields.
  • Related Articles

    [1]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [5]Zhengwei YAO (姚征伟), Lihong CHENG (成丽红), Rongan TANG (唐荣安), Jukui XUE (薛具奎). Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma[J]. Plasma Science and Technology, 2018, 20(11): 115002. DOI: 10.1088/2058-6272/aacbbf
    [6]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [7]WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
    [8]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [9]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [10]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04

Catalog

    Article views (567) PDF downloads (1383) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return