Advanced Search+
CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
Citation: CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05

Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy

Funds: supported by National Natural Science Foundation of China (Nos.10973043, 41074107), and Ministry of Science and Technology of China (No.\,2011CB811402)
More Information
  • Received Date: March 28, 2011
  • The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω 《ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfv\'en and slow modes are purely growing. The growth rate of the Alfv\'en wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]M Yaqub KHAN, Javed IQBAL. Soliton formation in electron-temperature-gradient-driven magnetoplasma[J]. Plasma Science and Technology, 2018, 20(2): 25101-025101. DOI: 10.1088/2058-6272/aa8f3b
    [4]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [5]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [6]ZHU Jun (祝俊). Dispersion Relation of Linear Waves in Quantum Magnetoplasmas[J]. Plasma Science and Technology, 2016, 18(7): 703-707. DOI: 10.1088/1009-0630/18/7/01
    [7]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [8]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [9]SHEN Hong (申虹), WANG Yannan (王延楠). Phases of Dense Matter in Supernovae and Neutron Stars[J]. Plasma Science and Technology, 2012, 14(7): 581-584. DOI: 10.1088/1009-0630/14/7/03
    [10]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02

Catalog

    Article views (442) PDF downloads (1362) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return