Advanced Search+
XIA Xiongping (夏雄平), YI Lin (易林). Relativistic Filamentation of Intense Laser Beam in Inhomogeneous Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1054-1058. DOI: 10.1088/1009-0630/14/12/04
Citation: XIA Xiongping (夏雄平), YI Lin (易林). Relativistic Filamentation of Intense Laser Beam in Inhomogeneous Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1054-1058. DOI: 10.1088/1009-0630/14/12/04

Relativistic Filamentation of Intense Laser Beam in Inhomogeneous Plasma

More Information
  • Received Date: November 24, 2011
  • In the paper, relativistic filamentation of intense laser beam in inhomogeneous plasma is investigated based on the nonparaxial region theory. The results show that, relativistic nonlinearity plays a main role in beam filamentation, and plasma inhomogeneity further reinforce the beam filamentation. The combination effects of relativistic nonlinearity and plasma inhomogeneity can generate particularly intense and short pulse laser. However, plasma inhomogeneity lead to obvious filamentation instability.
  • Related Articles

    [1]Ran LI, Taiwu HUANG, Mingyang YU, Cangtao ZHOU, Shuangchen RUAN. Local wavelength evolution and Landau damping of electrostatic plasma wave driven by an ultra-relativistic electron beam in dense inhomogeneous plasma[J]. Plasma Science and Technology, 2023, 25(7): 075001. DOI: 10.1088/2058-6272/acb31e
    [2]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [3]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [4]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [5]Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001
    [6]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [7]XIAO Jixiong (肖集雄), ZENG Zhong (曾中), XIA Donghui (夏冬辉), WANG Zhijiang (王之江), LIU Changhai (刘昌海). Effects of Boundary Current on Electromagnetic Dispersion Characteristics for a Relativistic Electron Beam[J]. Plasma Science and Technology, 2016, 18(1): 51-57. DOI: 10.1088/1009-0630/18/1/09
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]SHENG Zongqiang (圣宗强), REN Zhongzhou (任中洲). Investigations on Nuclei near Z = 82 in Relativistic Mean Field Theory with FSUGold[J]. Plasma Science and Technology, 2012, 14(6): 534-538. DOI: 10.1088/1009-0630/14/6/23
    [10]PENG Xiaodong (彭晓东), QIU Xiaoming (邱孝明), WANG Gang(王刚). Basic Features of ExB Convection Nonlinearity in Tokamak Plasmas[J]. Plasma Science and Technology, 2012, 14(4): 273-277. DOI: 10.1088/1009-0630/14/4/02

Catalog

    Article views (342) PDF downloads (1818) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return