Advanced Search+
JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26
Citation: JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26

Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions

Funds: Supported by the National Basic Research Program of China ( No. 2007CB209800), National Natural Science Foundation of China ( No. 10775108) and the Fundamental Research Funds for the Central Universities (20102020201000013)
More Information
  • Received Date: May 16, 2011
  • The irradiation damage in nickel-base alloy C-276 irradiated with 115KeV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4×1011/cm2 to 4.6×1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20~60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.
  • Related Articles

    [1]Xiaonan ZHANG (张小楠), Xianxiu MEI (梅显秀), Shanshan LI (李山山). The irradiation variation of amorphous alloy FeSiB using for fusion devices induced by 2 MeV He ions[J]. Plasma Science and Technology, 2021, 23(2): 25601-025601. DOI: 10.1088/2058-6272/abd97a
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [4]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [5]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]LIN Xiaomei (林晓梅), LI Han (李晗), YAO Qinghua (姚清华). Signal Detection of Carbon in Iron-Based Alloy by Double-Pulse Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 953-957. DOI: 10.1088/1009-0630/17/11/12
    [8]MAO Yangwu(毛样武), GUO Beibei(郭贝贝), NIE Dunwei(聂敦伟), Domenico MOMBELLO. Tarnish Testing of Copper-Based Alloys Coated with SiO 2 -Like Films by PECVD[J]. Plasma Science and Technology, 2014, 16(5): 486-490. DOI: 10.1088/1009-0630/16/5/08
    [9]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [10]ZHENG Yongnan (郑永男), HUANG Qunying (黄群英), PENG Lei (彭蕾), ZUO Yi (左翼), FAN Ping (范平), ZHOU Dongmei (周冬梅), YUAN Daqing (袁大庆), WU Yichan (吴宜灿), ZHU Shengyun (朱升云). Variation of Radiation Damage with Irradiation Temperature and Dose in CLAM Steel[J]. Plasma Science and Technology, 2012, 14(7): 629-631. DOI: 10.1088/1009-0630/14/7/14

Catalog

    Article views (633) PDF downloads (993) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return