Advanced Search+
PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07
Citation: PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07

Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude

Funds: supported by the Research Foundation of Education Bureau of Hebei Province, China ( No. 2009308); National Natural Science Foundation of China (No.10805013); the Natural Science Foundation of Hebei Province (No.A2011201132, A2009000149)
More Information
  • Received Date: March 28, 2011
  • A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 1010-1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O2-, O4-, CO4- and CO3- are the dominant negative species when the initial electron density ne0≤1013 cm-3, and only an electron and CO3- are left when ne0≥1015 cm-3. N2+, N4+ and O2+ are dominant in the positive charges for any ionization degree. Other positive species, such as O4+, N3+, NO+, NO2+, Ar2+and H3O+•H2O, are dominant only for a certain ionization degree and in a certain period.
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [6]DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11
    [7]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [8]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [9]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (524) PDF downloads (1523) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return