Advanced Search+
ZHU Liying (朱立颖), WU Jianwen (武建文), LIU Bin (刘斌), FENG Ying (冯英). The Dynamic Volt-Ampere Characteristics of a Vacuum Arc at Intermediate-Frequency Under a Transverse Magnetic Field[J]. Plasma Science and Technology, 2013, 15(1): 30-36. DOI: 10.1088/1009-0630/15/1/06
Citation: ZHU Liying (朱立颖), WU Jianwen (武建文), LIU Bin (刘斌), FENG Ying (冯英). The Dynamic Volt-Ampere Characteristics of a Vacuum Arc at Intermediate-Frequency Under a Transverse Magnetic Field[J]. Plasma Science and Technology, 2013, 15(1): 30-36. DOI: 10.1088/1009-0630/15/1/06

The Dynamic Volt-Ampere Characteristics of a Vacuum Arc at Intermediate-Frequency Under a Transverse Magnetic Field

Funds: supported by Special Scienti¯c and Research Funds for Doctoral Specialty of Institution of Higher Learning (200800060004), and National Natural Science Foundation of China (No. 51177004), and by the Innovation foundation of BUAA for Ph.D Graduates
More Information
  • Received Date: September 29, 2011
  • In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic ¯eld (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic ¯eld at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Speci¯cally, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.
  • Related Articles

    [1]Qilin SHI, Hao WU, Zhao YUAN, Zhe TAO, Guixia LI, Wei LUO, Wei JIANG. The influence of weak transverse magnetic field on plasma dissipation process in the post-arc phase in a vacuum interrupter[J]. Plasma Science and Technology, 2022, 24(5): 055501. DOI: 10.1088/2058-6272/ac4fb3
    [2]Ziang TONG (佟子昂), Jianwen WU (武建文), Wei JIN (金巍), Jun CHEN (陈均). Properties of intermediate-frequency vacuum arc in sinusoidal curved contact and butt contact[J]. Plasma Science and Technology, 2020, 22(2): 24004-024004. DOI: 10.1088/2058-6272/ab5b19
    [3]Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
    [4]Fangyuan LIU (刘方圆), Deping YU (余德平), Cheng LV (吕程), Yazhou DUAN (段亚洲), Yanjie ZHONG (钟严杰), Jin YAO (姚进). Experimental study on the jet characteristics of a steam plasma torch[J]. Plasma Science and Technology, 2018, 20(12): 125401. DOI: 10.1088/2058-6272/aad9f1
    [5]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [6]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [7]JIANG Yuan (蒋原), WU Jianwen (武建文). Interruption Phenomenon in Intermediate-Frequency Vacuum Arc[J]. Plasma Science and Technology, 2016, 18(3): 311-318. DOI: 10.1088/1009-0630/18/3/16
    [8]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [9]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06
    [10]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08

Catalog

    Article views (267) PDF downloads (1678) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return