XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
Citation:
XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
Citation:
XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
1Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
2Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
Funds: supported by National Natural Science Foundation of China (No. 11175024), the Beijing Natural Science Foundation (No. 1112012), Science and Technology on Surface Engineering Laboratory, and the Beijing Education Committee (No. BM201002), 2011BAD24B01, KM201110015008, KM201010015005 and PHR20110516
Without extra heating, Al2O3 thin films were deposited on a hydrogen-terminated Si substrate etched in hydrofluoric acid by using a self-built electron cyclotron resonance (ECR) plasma-assisted atomic layer deposition (ALD) device with Al(CH3)3 (trimethylaluminum; TMA) and O2 used as precursor and oxidant, respectively. During the deposition process, Ar was in- troduced as a carrier and purging gas. The chemical composition and microstructure of the as-deposited Al2O3 films were characterized by using X-ray di®raction (XRD), an X-ray photo- electric spectroscope (XPS), a scanning electron microscope (SEM), an atomic force microscope (AFM) and a high-resolution transmission electron microscope (HRTEM). It achieved a growth rate of 0.24 nm/cycle, which is much higher than that deposited by thermal ALD. It was found that the smooth surface thin film was amorphous alumina, and an interfacial layer formed with a thickness of ca. 2 nm was observed between the Al2O3 film and substrate Si by HRTEM. We conclude that ECR plasma-assisted ALD can grow Al2O3 films with an excellent quality at a high growth rate at ambient temperature.