Advanced Search+
LI Shufang (李淑芳). Surface Treatment of PET Nonwovens with Atmospheric Plasma[J]. Plasma Science and Technology, 2013, 15(1): 82-85. DOI: 10.1088/1009-0630/15/1/13
Citation: LI Shufang (李淑芳). Surface Treatment of PET Nonwovens with Atmospheric Plasma[J]. Plasma Science and Technology, 2013, 15(1): 82-85. DOI: 10.1088/1009-0630/15/1/13

Surface Treatment of PET Nonwovens with Atmospheric Plasma

More Information
  • Received Date: September 08, 2011
  • In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the e®ects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.
  • Related Articles

    [1]Leyi YU, Wenqi LU, Lina ZHANG. Abnormal transition of the electron energy distribution with excitation of the second harmonic in low-pressure radio-frequency capacitively coupled plasmas[J]. Plasma Science and Technology, 2024, 26(8): 085402. DOI: 10.1088/2058-6272/ad4596
    [2]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [3]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [4]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [5]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [6]XU Yijun (徐轶君), WU Xuemei (吴雪梅), YE Chao (叶超). Effect of Low-Frequency Power on Etching Characteristics of 6H-SiC in C 4 F 8 /Ar Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2013, 15(10): 1066-1070. DOI: 10.1088/1009-0630/15/10/19
    [7]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [8]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [9]TANG Enling (唐恩凌), XIANG Shenghai (相升海), YANG Minghai (杨明海), LI Lexin (李乐新). Sweep Langmuir Probe and Triple Probe Diagnostics for Transient Plasma Produced by Hypervelocity Impact[J]. Plasma Science and Technology, 2012, 14(8): 747-753. DOI: 10.1088/1009-0630/14/8/12
    [10]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07

Catalog

    Article views (270) PDF downloads (1678) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return