ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02
Citation:
ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02
ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02
Citation:
ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02
1 Fusion Simulation Center, Peking University, Beijing 100871, China 2 Department of Physics and Astronomy, University of California, Irvine, CA92697, USA
Funds: supported by the China Scholarship Council (No.2009601135), the National Special Research Program of China for ITER (No.2013GB111000), and the U. S. Department of Energy (DOE) SciDAC GSEP center
The zonal fields effect on the beta-induced Alfvén eigenmode (BAE) destabilized by the energetic particles in toroidal plasmas is studied through the gyrokinetic particle simulations. It is found that the localized zonal fields with a negative value around the mode rational surface are generated by the nonlinear BAE. In the weakly driven case, the zonal fields with a strong geodesic acoustic mode (GAM) component have weak effects on the nonlinear BAE evolution. In the strongly driven case, the zonal fields are dominated by a more significant zero frequency component and have stronger effects on the nonlinear BAE evolution.