Advanced Search+
SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛). A Computational Study on the Discharge Characteristics of Atmospheric Dielectric Barrier Discharges at a Constant Power[J]. Plasma Science and Technology, 2013, 15(10): 1025-1030. DOI: 10.1088/1009-0630/15/10/12
Citation: SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛). A Computational Study on the Discharge Characteristics of Atmospheric Dielectric Barrier Discharges at a Constant Power[J]. Plasma Science and Technology, 2013, 15(10): 1025-1030. DOI: 10.1088/1009-0630/15/10/12

A Computational Study on the Discharge Characteristics of Atmospheric Dielectric Barrier Discharges at a Constant Power

  • The study on homogeneous DBDs at atmospheric pressure has attracted much at- tention for their advantages in applications. Tremendous work has been conducted both ex- perimentally and numerically at a constant applied voltage or driving frequency. However the investigation of dielectric barrier discharges is still scarce for a constant power or power density. In this work, a new computational approach for DBDs is developed to explore atmospheric DBDs at a constant power based on a one-dimensional fluid model. The frequency and gap spacing effects on the atmospheric plasmas are systematically analyzed based on computational data. The computational results show that at a constant power both the current density and the amplitude of the applied voltage decrease, whereas the current pulse width increases, with increasing frequency. The simulation also indicates that as the gap spacing is raised with a fixed power and frequency, the current density and electron density increase initially, then reach their peak values, and then decrease, which means that there are maximum values for both of them. These results are significant for many industrial applications, as they can be used to optimize plasma devices of DBDs with the consideration of power consumption.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return