Advanced Search+
Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
Citation: Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02

High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD

Funds: supported by KAKENHI (Grant-in-Aid for Scienti¯c Research(C), 21560862) of Japan
More Information
  • Received Date: January 19, 2012
  • To realize an excitation of electron Bernstein waves (EBW) via mode conversion from X-mode waves injected from the high magnetic field side (HFS), new inner-vessel mirrors were installed close to a helical coil in the large helical device (LHD). 77 GHz electron cyclotron (EC) wave beams injected from an existing EC-wave injection system toward the new mirror are rejected on the mirror so that the beams are injected to plasmas from HFS. Evident increases in the electron temperature at the plasma core region and the plasma stored energy were observed by the HFS beam injection to the plasmas with the line-average electron density of 7.5x1019 m-3, which is slightly higher than the plasma cut-off density of 77 GHz EC-waves, 7.35x1019 m-3. The heating efficiency evaluated from the changes in the time derivative of the plasma stored energy reached ~70%. Although so far it is not clear which is the main cause of the heating effect, the mode-converted EBW or the X-mode wave itself injected from the HFS, an e®ective heating of high-density plasma over the plasma cut-o® of EC-wave was successfully demonstrated.
  • Related Articles

    [1]Naoko ASHIKAWA, Robert LUNSFORD, Federico NESPOLI, Erik GILSON, Yaowei YU, Jiansheng HU, Shinichiro KADO. Coated boron layers by boronization and a real-time boron coating using an impurity powder dropper in the LHD[J]. Plasma Science and Technology, 2024, 26(8): 085103. DOI: 10.1088/2058-6272/ad495f
    [2]Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8
    [3]WU Jun (吴军), WU Jian (吴健), XU Zhengwen (许正文). Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere[J]. Plasma Science and Technology, 2016, 18(9): 890-896. DOI: 10.1088/1009-0630/18/9/03
    [4]MING Tingfeng (明廷凤), Satoshi OHDACHI, Yasuhiro SUZUKI, LHD Experiment Group. Estimate of the Deposition Profile of Carbon Pellets Using a High-Speed VUV Imaging System in the LHD[J]. Plasma Science and Technology, 2013, 15(12): 1178-1184. DOI: 10.1088/1009-0630/15/12/03
    [5]Kenji SAITO, Ryuhei KUMAZAWA, Tetsuo SEKI, Hiroshi KASAHARA, Goro NOMURA, et al. Measurement of Ion Cyclotron Emissions by Using High-Frequency Magnetic Probes in the LHD[J]. Plasma Science and Technology, 2013, 15(3): 209-212. DOI: 10.1088/1009-0630/15/3/03
    [6]WANG Erhui (王二辉), S. MORITA, M. GOTO, DONG Chunfeng (董春凤). Observation of the Two-Dimensional Distribution of Impurity Line Emissions Using a Space-Resolved EUV Spectrometer in LHD[J]. Plasma Science and Technology, 2013, 15(2): 106-109. DOI: 10.1088/1009-0630/15/2/05
    [7]Hiroe IGAMI, Hiroshi IDEI, Shin KUBO, Yasuo YOSHIMURA., Takashi SHIMOZUMA, Hiromi TAKAHASHI. Measurement of the electron Bernstein wave emission with one of the power transmission lines for ECH in LHD[J]. Plasma Science and Technology, 2011, 13(4): 405-409.
    [8]Takashi MAEKAWA, Tomokazu YOSHINAGA, Hitoshi TANAKA, Masaki UCHIDA, Fumitake WATANABE. Study of Electron Orbits for Formation of Toroidal Closed Flux Surface by ECH[J]. Plasma Science and Technology, 2011, 13(3): 342-346.
    [9]DONG Chunfeng, Shigeru MORITA, Motoshi GOTO, Masahiro KOBAYASHI. Study on Radial Position of Impurity Ions in Core and Edge Plasma of LHD Using Space-Resolved EUV Spectrometer[J]. Plasma Science and Technology, 2011, 13(2): 140-144.
    [10]YAO Lianghua (姚良骅), ZHAO Dawei (赵大为), FENG Beibin (冯北滨), CHEN.Chengyuan (陈程远), ZHOU Yan(周艳), HAN Xiaoyu (韩晓玉), LI Yonggao (李永高), Jerome BUCALOSSI, Duan Xuru (段旭如). Comparison of Supersonic Molecular Beam Injection from both low field side and high field side of HL-2A[J]. Plasma Science and Technology, 2010, 12(5): 529-534.

Catalog

    Article views (319) PDF downloads (1174) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return