Advanced Search+
LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18
Citation: LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18

Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch

Funds: supported by National Natural Science Foundation of China (Nos.50637010, 51207127)
More Information
  • Received Date: August 25, 2011
  • Field distortion gas switch is one of the crucial elements in a Marx generator, fast linear transformer driver and other pulsed power installations. The performance of the gas switch, which is dramatically affected by the surface roughness due to electrode erosion during the dis- charge process, directly influences the output parameters, stability and reliability of the pulsed power system. In this paper, an electrode surface roughness (ESR) calculation model has been established based on a great deal of experimental data under operating current. The discharge current waveform, the peak height of the burr, the radius and the depth of etch pits in the elec- trode erosion region were used to predict the ESR. Also, experimental results indicate that this calculation model can effectively estimate the ESR of the test gas switch.
  • Related Articles

    [1]Shrouk ELASHRY, Usama M. RASHED, Mostafa A. WAHBA, Hend M. AHMED, Nabil M. ELSIRAGY. Surface activation of viscose textiles via air, argon, and oxygen dielectric barrier discharge plasma: influence of peak voltage[J]. Plasma Science and Technology, 2024, 26(7): 075508. DOI: 10.1088/2058-6272/ad370b
    [2]Shiheng YIN (尹诗衡), Li REN (任力), Yingjun WANG (王迎军). Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption[J]. Plasma Science and Technology, 2017, 19(1): 15501-015501. DOI: 10.1088/1009-0630/19/1/015501
    [3]SUN Jie (孙洁), QIU Yiping (邱夷平). The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films[J]. Plasma Science and Technology, 2015, 17(5): 402-408. DOI: 10.1088/1009-0630/17/5/07
    [4]LI Yan(李岩), YAO Mengqi(姚萌奇), LIAO Ruirui(廖瑞瑞), YANG Wu(杨武), GAO Jinzhang(高锦章), REN Jie(任杰). Synthesis of Poly (Butyl Methacrylate/Butyl Acrylate) Highly Absorptive Resin Using Glow Discharge Electrolysis[J]. Plasma Science and Technology, 2014, 16(8): 777-781. DOI: 10.1088/1009-0630/16/8/08
    [5]YU Jie(俞洁), YANG Gege(杨格格), PAN Yuanpei(潘元沛), LU Quanfang(陆泉芳), YANG Wu(杨武), GAO Jinzhang(高锦章). Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow- Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes[J]. Plasma Science and Technology, 2014, 16(8): 767-776. DOI: 10.1088/1009-0630/16/8/07
    [6]Jeong Woo YUN. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials[J]. Plasma Science and Technology, 2013, 15(6): 521-527. DOI: 10.1088/1009-0630/15/6/07
    [7]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [8]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
    [9]ZHAO Guowei, GAO Junping, GAO Qiang, CHEN Yashao. Surface Modification of Biodegradable Poly(D,L-lactic acid) by Nitrogen and Nitrogen/Hydrogen Plasma for Improving Surface Hydrophilicity[J]. Plasma Science and Technology, 2011, 13(2): 230-234.
    [10]ZHONG Shao-Feng (钟少锋). Surface Modification of Polypropylene Microporous Membrane by Atmospheric- Pressure Plasma Immobilization of N,N-dimethylamino ethyl methacrylate[J]. Plasma Science and Technology, 2010, 12(5): 619-627.

Catalog

    Article views (309) PDF downloads (2059) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return