Advanced Search+
HE Yihua (贺艺华), YANG Chang (杨昶), HE Zhaoguo (何兆国), ZHANG Zelong (张择龙), et al.. Observation and Modeling of Geostationary Orbit Electron Energization Induced by Enhanced Dayside Whistler-Mode Waves[J]. Plasma Science and Technology, 2013, 15(9): 866-870. DOI: 10.1088/1009-0630/15/9/06
Citation: HE Yihua (贺艺华), YANG Chang (杨昶), HE Zhaoguo (何兆国), ZHANG Zelong (张择龙), et al.. Observation and Modeling of Geostationary Orbit Electron Energization Induced by Enhanced Dayside Whistler-Mode Waves[J]. Plasma Science and Technology, 2013, 15(9): 866-870. DOI: 10.1088/1009-0630/15/9/06

Observation and Modeling of Geostationary Orbit Electron Energization Induced by Enhanced Dayside Whistler-Mode Waves

Funds: supported by National Natural Science Foundation of China (Nos.40925014, 41274165), the Specialized Research Fund for State Key Laboratories, the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Construct Program of the Key Discipline in Hunan Province, China
More Information
  • Received Date: June 25, 2012
  • We provide correlated observations of enhanced dayside whistler-mode waves and energetic electron acceleration collected by the CLUSTER and GOES satellites during the 23∼24 September 2001 storm. Energetic (>0.6 MeV) electron fluxes are found to increase significantly during the recovery phase and the main phase, by a factor of ∼50 higher than the prestorm level. These high electron fluxes occur when strong dayside whistler-mode waves are present. Two-dimensional (2D) numerical simulations are carried out and the results demonstrate that the dayside whistler-mode wave can contribute to such enhancements in electron flux within 24 h, consistent with the observation.
  • Related Articles

    [1]Longlong SANG, Quanming LU, Jinlin XIE, Qiaofeng ZHANG, Weixing DING, Yangguang KE, Xinliang GAO, Jian ZHENG. Experimental studies on the propagation of whistler-mode waves in a magnetized plasma structure with a non-uniform density[J]. Plasma Science and Technology, 2023, 25(9): 095301. DOI: 10.1088/2058-6272/acc502
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [4]Jun CHEN (陈俊), Ruiji HU (胡睿佶), Bo LYU (吕波), Fudi WANG (王福地), Xiaojie WANG (王晓洁), Handong XU (徐旵东), Yingying LI (李颖颖), Jia FU (符佳), Xianghui YIN (尹相辉), Dajun WU (吴大俊), Fukun LIU (刘甫坤), Qing ZANG (臧庆), Haiqing LIU (刘海庆), Yuejiang SHI (石跃江), Shifeng MAO (毛世峰), Yi YU (余羿), Baonian WAN (万宝年), Minyou YE (叶民友), Yongcai SHEN (沈永才), EAST team. Observation and characterization of the effect of electron cyclotron waves on toroidal rotation in EAST L-mode discharges[J]. Plasma Science and Technology, 2017, 19(10): 105101. DOI: 10.1088/2058-6272/aa7cec
    [5]ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05
    [6]LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03
    [7]JIANG Lina(姜丽娜), WANG Hongyu(王虹宇), SUN Peng(孙鹏). The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam[J]. Plasma Science and Technology, 2014, 16(1): 12-16. DOI: 10.1088/1009-0630/16/1/03
    [8]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [9]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
    [10]ZHOU Qinghua, SHI Jiankui, XIAO Fuliang. A Three-Dimensional Ray Tracing Study on Whistler-Mode Chorus During Geomagnetic Activities[J]. Plasma Science and Technology, 2011, 13(4): 440-445.

Catalog

    Article views (241) PDF downloads (1331) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return