Advanced Search+
WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07
Citation: WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07

The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition

Funds: supported by National Natural Science Foundation of China (Nos.10835004, 10775031 and 11375042), Shanghai Municipal Com- mittee of Science and Technology of China (10XD1400100), Outstanding Young Investigator Award (No.11005017)
More Information
  • Received Date: August 29, 2013
  • The gas phase nucleation process of anatase TiO 2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO 2 film.
  • 1 Pfaff G, Reynders P. 1999, Chemical Reviews, 99: 1963;
    2 Salvador A, Pascual-Martí M C, Adell J R, et al. 2000,Journal of Pharmaceutical and Biomedical Analysis,22: 301;
    3 Zallen R, Moret M P. 2006, Solid State Communica-tions, 137: 154;
    4 Yuan Shuai, Chen Wanhua, Hu Shengshui. 2005, Ma-terials Science and Engineering C, 25: 479;
    5 Fujishima A, Honda K. 1972, Nature, 238: 37;
    6 Minabe T, Tryk D A, Fujishima A. 2000, Journal of Photochemistry and Photobiology A: Chemistry, 137:53;
    7 Tryk D A, Fujishima A, Honda K. 2000, Electrochim-ica Acta, 45: 2363;
    8 Moon J, Park J A, Lee S J, et al. 2010, Sensors and Actuators B: Chemical, 149: 301;
    9 Nie X, Leyland A, Matthews A. 2000, Surface and Coatings Technology, 125: 407 10 O'Regan B, Gratzel M. 1991, Nature, 353: 73735;
    Plasma Science and Technology, Vol.16, No.1, Jan. 2014;
    11 Gilma Granados O, Carlos A Páez M, Fernando Martínez O, et al. 2005, Catalysis Today, 107-108: 589;
    12 Liu Xiang, Wu Xiaohua, Cao Hui, et al. 2004, Journal of Applied Physics, 95: 3141;
    13 Borras A, Sanchez-Valencia J R, Widmer R, et al.2009, Cryst. Growth Des., 9: 2868;
    14 Zheng Zhaoke, Huang Baibiao, Qin Xiaoyan, et al.2009, Chem. Eur. J., 15: 12576;
    15 Liu Min, Piao Lingyu, Zhao Lei, et al. 2010, Chem.Commun., 46: 1664;
    16 Zhu Aimin, Nie Longhui, Zhang Xiuling, et al. 2004,Plasma Science and Technology, 6: 2546;
    17 Yu Kehan, Bo Zheng, Lu Ganhua, et al. 2011,Nanoscale Research Letters, 6: 202;
    18 Bárdos L, Baránková H. 2010, Thin Solid Films, 518:6705;
    19 Lin Zeng, Wang Feng, Gao Ding, et al. 2013, Plasma Science and Technology, 15: 690;
    20 Ni Guohua, Zhao Peng, Cheng Cheng. 2012, Plasma Sources Sci. Technol., 21: 015009;
    21 Michael A L, Allan J L. 2005, Principles of Plasma Discharges and Materials Processing. John Wiley &Sons;
    22 Wang Dexin, Yang Qingyu, Guo Ying, et al. 2011, Ma-terials Letters, 65: 2526;
    23 Xu Xueji, Zhu Dingchang. 1996, Gas Discharge Physics. Fudan University Publishing House, Shang-hai (in Chinese) ;
    24 Boffard J B, Lin C C, DeJoseph Jr C A. 2004, J. Phys.D: Appl. Phys., 37: 143;
    25 A Fontcuberta i Morral, P Roca i Cabarrocas. 2002,Journal of Non-Crystalline Solids, 299-302: 196;
    26 P Roca i Cabarrocas. 2002, Curr. Opin. Solid State Mater. Sci., 6: 439;
    27 Glasner A, Kenat J. 1968, Journal of Crystal Growth,2: 119
  • Related Articles

    [1]Qinghua HUANG (黄清华), Lin XIONG (熊琳), Xiaolong DENG (邓小龙), Zhan SHU (舒展), Qiang CHEN (陈强), Bing BAO (包兵), Mingli CHEN (陈明礼), Qing XIONG (熊青). Super-hydrophobic film deposition by an atmospheric-pressure plasma process and its anti-icing characteristics[J]. Plasma Science and Technology, 2019, 21(5): 55502-055502. DOI: 10.1088/2058-6272/ab01f4
    [2]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [3]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [4]PENG Shi (彭释), LI Lingjun (李灵均), LI Wei (李炜), WANG Chaoliang (王超梁), GUO Ying (郭颖), SHI Jianjun (石建军), ZHANG Jing (张菁). Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(4): 337-341. DOI: 10.1088/1009-0630/18/4/01
    [5]Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09
    [6]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [7]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [8]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [9]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [10]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11

Catalog

    Article views (683) PDF downloads (1250) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return