Advanced Search+
QU Hongpeng (曲洪鹏), PENG Xiaodong (彭晓东), SHEN Yong (沈勇), WANG Aike (王爱科), HAO Guangzhou (郝广周), HU Shilin (胡世林). Effect of Finite-Ion-Banana-Width on the Polarization Contribution to the Neoclassical Tearing Modes Evolution[J]. Plasma Science and Technology, 2014, 16(12): 1090-1095. DOI: 10.1088/1009-0630/16/12/02
Citation: QU Hongpeng (曲洪鹏), PENG Xiaodong (彭晓东), SHEN Yong (沈勇), WANG Aike (王爱科), HAO Guangzhou (郝广周), HU Shilin (胡世林). Effect of Finite-Ion-Banana-Width on the Polarization Contribution to the Neoclassical Tearing Modes Evolution[J]. Plasma Science and Technology, 2014, 16(12): 1090-1095. DOI: 10.1088/1009-0630/16/12/02

Effect of Finite-Ion-Banana-Width on the Polarization Contribution to the Neoclassical Tearing Modes Evolution

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB105002, 2014GB107001 and 2014GB124004) and National Natural Science Foundation of China (Nos. 11175057 and 11275061).
More Information
  • Received Date: March 30, 2014
  • In the previous analytical description of the neoclassical polarization current effect on the neoclassical tearing modes (NTMs), it is usually assumed that the magnetic island is much larger than the finite-ion-banana-width (FBW). This assumption is questionable when the experimentally observed seed island width of the NTMs is comparable to the FBW. We introduce a simple and direct theoretical method to investigate the FBW effect on the neoclassical polarization contribution to the NTM evolution in collisional plasmas. The results show that, the FBW effect can strongly modify the neoclassical polarization current profile near the island separatrix, and thus weaken its probably stabilizing effect on the NTMs.
  • 1.Rutherford P H. 1973, Phys. Fluids, 16: 1903
    2.Qu W X and Callen J D. 1985, National Technical Information Service Document No. DE6008946. University of Wisconsin Plasma Report No. UWPR 85-5, 1985
    3.Carrera R, Hazeltine R D and Kotschenreuther M. 1986, Phys. Fluids, 29: 899
    4.Chang Z, Callen J D, Fredrickson E D, et al. 1995, Phys. Rev. Lett., 74: 4663
    5.Gude A, G\"{u}nter S, Sesnic S and ASDEX-Upgrade Team. 1999, Nucl. Fusion, 39: 127
    6. Gude A, G\"{u}nter S, Maraschek M, et al. 2002, Nucl. Fusion, 42: 833
    7. La Hayye R J and Sautor O. 1998, Nucl. Fusion, 38: 987
    8.Zohm H, Gautenbein G Gude A, et al. 2001, Nucl. Fusion, 41: 197
    9.Gibson K J, Barratt N, Chapman I, et al. 2010, Plasma Phys. Control. Fusion, 52: 124041
    10.Smolyakov A I, Hirose A, Lazzaro, et al. 1995, Phys. Plasmas, 2: 1581
    11.Wilson H R, Connor J W, Hastie R J and Hegna C C. 1996, Phys. Plasmas, 3: 248
    12. Mikhailovskii A B. 2003, Contrib. Plasma Phys., 43: 125
    13.Imada K and Wilson H R. 2009, Plasma Phys. Control. Fusion, 51: 105010
    14. Imada K and Wilson H R. 2012, Phys. Plasmas, 19: 032120
    15.Mikhailovskii A B, Pustovitov V D and Smolyakov A I. 2000, Plasma Phys. Control. Fusion, 42: 309
    16.Bergmann A, Poli E and Peeters A G. 2005, Phys. Plasmas, 12: 072501
    17.Bergmann A, Poli E and Peeters A G, et al. 2003, Europhys. Conf. Abstr., 27A: P-3.130
    18.Poli E, Bergmann A and Peeters A G, et al. 2005, Nucl. Fusion, 45: 384
    19.Qu H and Gao Q. 2000, Plasma Sci. Technol., 2: 509
    20.Wesson J. 1997, Tokamaks. Clarrendon, Oxford, p.164
    21.Fong B H and Hahm T S. 1999, Phys. Plasmas, 6: 188
    22.Wang L and Hahm T S. 2009, Phys. Plasmas, 16: 062309
    23.Qu H. 2013, Plasma Sci. Technol., 15: 852

Catalog

    Article views (1200) PDF downloads (1266) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return