Advanced Search+
WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
Citation: WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03

Axial Magnetic Field Effects on Xenon Short-Arc Lamps

Funds: supported by National Natural Science Foundation of China (Nos. 50876101, 11035005 ) and the Science Instrument Foundation of CAS
More Information
  • Received Date: December 15, 2013
  • The effect of an axial magnetic field (AMF) on an old xenon short-arc lamp is experimentally investigated in this work. As the AMF increases up to 18 mT, the visible radiation power and electric power ascend more than 80% and 70% respectively, and the radiation efficiency is improved by 23% for the best increment at 12 mT AMF. The measurement of radiation intensity shows that the increment of radiation intensity comes mostly from the plasma area close to the cathode tip, and partially from the other area of the arc column. Successive images of the arc indicate that the arc column not only rotates about its axis, but revolves around the axis of electrodes with the AMF. The arc column structure is constricted, distorted and elongated as the AMF increases. It is suggested that the improvements of the radiation intensity and radiation efficiency are attributed to the constriction of the arc column, which is mainly induced by the enhanced cathode jet.
  • 1. Rehmet M. 1980, IEE Proceedings A, 127: 190
    2. Hirsch D, von Zedtwitz P, Osinga T, et al. 2003, Journal of Solar Energy Engineering, 125: 117
    3. Yeralan S, Doughty D, Blondia R, et al. 2005, SPIE Proceedings, 5450: 27
    4.Weichmann U, Cromwijk J W, Heusler G, et al. 2005, SPIE Proceedings, 5740: 13
    5. Guesdon C, Alxneit I, Tschudi H R, et al. 2006, Solar Energy, 80: 1344
    6. Alxneit I and Schmit H. 2012, Journal of Solar Energy Engineering-Transactions of the Asme, 134: 011013
    7. Youshi T. 2005, Motion Picture \& Video Technology, 11: 43
    8. Woodlee R L, Fuh M R S, et al. 1989, Review of Scientific Instruments, 60: 3640
    9. Gold RS. 1996, Arc lamp with external magnetic means. US5589726-A,USA
    10. Manning L W. 2000, High pressure arc discharge lamp has magnetic field source for suppressing plasma jet instability. AU200044952-A, USA
    11. Kawanaka J, Ogata A, Kubodera S, et al. 1997, Applied Physics B-Lasers and Optics, 65: 609
    12. Laiho R and Mantysal E. 1969, Applied Physics Letters, 15: 39
    13. Drouet M G and Meunier J L. 1985, IEEE Transactions on Plasma Science, 13: 285
    14. Luo J and Jia C S. 2001, Acta Metallurgica Sinica, 37: 212
    15. Luo J and Jia C S. 2001, Acta Metallurgica Sinica, 37: 217
    16. Yin X Q, Sun J T and Zhang J X. 2013, Journal of Xi'an Jiaotong University, 47: 85
    17. Wang C, Chen T, Zha J, et al. 2013, High Voltage Engineering, 39: 1649
  • Related Articles

    [1]Xiaonan ZHANG (张小楠), Xianxiu MEI (梅显秀), Shanshan LI (李山山). The irradiation variation of amorphous alloy FeSiB using for fusion devices induced by 2 MeV He ions[J]. Plasma Science and Technology, 2021, 23(2): 25601-025601. DOI: 10.1088/2058-6272/abd97a
    [2]Youping LU (鲁又萍), Yue SU (苏悦), Wei GE (葛伟), Tengfei YANG (杨腾飞), Zhanfeng YAN (闫占峰), Yugang WANG (王宇钢), Songqin XIA (夏松钦). Conversion between Vickers hardness and nanohardness by correcting projected area with sink-in and pile-up effects[J]. Plasma Science and Technology, 2020, 22(6): 65602-065602. DOI: 10.1088/2058-6272/ab7d47
    [3]Zhaonan DING (丁兆楠), Chonghong ZHANG (张崇宏), Yitao YANG (杨义涛), Yuguang CHEN (陈宇光), Xianlong ZHANG (张宪龙), Yin SONG (宋银), Tongda MA (马通达), Yuping XU (徐玉平), Guangnan LUO (罗广南). Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions[J]. Plasma Science and Technology, 2020, 22(5): 55601-055601. DOI: 10.1088/2058-6272/ab62e5
    [4]LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11
    [5]HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20
    [6]ZHENG Yongnan (郑永男), HUANG Qunying (黄群英), PENG Lei (彭蕾), ZUO Yi (左翼), FAN Ping (范平), ZHOU Dongmei (周冬梅), YUAN Daqing (袁大庆), WU Yichan (吴宜灿), ZHU Shengyun (朱升云). Variation of Radiation Damage with Irradiation Temperature and Dose in CLAM Steel[J]. Plasma Science and Technology, 2012, 14(7): 629-631. DOI: 10.1088/1009-0630/14/7/14
    [7]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
    [8]LU Dong, LI Wenjian, WU Xin, WANG Jufang, MA Shuang, LIU Qingfang, HE Jinyu, JING Xigang, DING Nan. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae[J]. Plasma Science and Technology, 2010, 12(6): 753-756.
    [9]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
    [10]HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580.

Catalog

    Article views (402) PDF downloads (1080) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return