Advanced Search+
CHENG Yuguo (成玉国), CHENG Mousen (程谋森), WANG Moge (王墨戈), YANG Xiong (杨雄), LI Xiaokang (李小康). Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1119-2225. DOI: 10.1088/1009-0630/16/12/06
Citation: CHENG Yuguo (成玉国), CHENG Mousen (程谋森), WANG Moge (王墨戈), YANG Xiong (杨雄), LI Xiaokang (李小康). Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1119-2225. DOI: 10.1088/1009-0630/16/12/06

Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges

More Information
  • Received Date: December 08, 2013
  • A one-dimensional radial non-uniform fluid model is employed to study plasma behaviors with special emphasis laid on helicon discharges. The plasma density n e, electron temperature Te, electron azimuthal and radial drift velocities are investigated in terms of the plasma radius rp, magnetic field intensity B0 and gas pressure p0, by assuming radial ambipolar diffusion and negligible ion cyclotron movement. The results show that the magnetic confinement plays an important role in the discharge equilibrium, especially at low pressure, which significantly reduces T e compared with the case of a negligible magnetic field effect, and higher B0 leads to a greater average plasma density. Te shows little variations in the plasma density range of 10 11 cm −3 - 10 13 cm −3 for p 0 < 3.0 mTorr. Comparison of the simulation results with experiments suggests that the model can make reasonable predictions of Te in low pressure helicon discharges.
  • 1.Williams L T and Walker L R. 2013, J. Prop.Power, 29: 520
    2.Charles C, Takahashi K and Boswell R W. 2012, Appl. Phys. Lett., 100: 113504
    3.Takahashi K. 2011, Phys. Rev. Lett., 107: 235001
    4.Batishchev O V. 2009, IEEE Trans. Plasma Sci., 37: 1563
    5. Chen F F. 2008, IEEE Trans. Plasma Sci., 365: 2095
    6.Toki K, Shinohara S, Tanikawa T and Shamrai K P. 2006, Thin Solid Films, 506-507: 597
    7.Ahedo E and Manuel Martinez Sanchez. 2009, Phys. Rev. Lett., 103: 135002
    8. Takahashi K, Lafleur T, Charles C, et al. 2011, Appl. Phys. Lett., 98: 141503
    9. Michael D W, Christine C and Boswell R W. 2009, J. Phys. D: Appl. Phys., 42: 245201
    10.Michael D W, Charles C and Boswell R W. 2011, IEEE Trans. Plasma Sci., 39: 2468
    11. Miljak D G and Chen F F. 1998, Plasma Sources Sci. Technol., 7: 537
    12. Fruchtman A, Makrinich G and Ashkenazy J. 2005, Plasma Sources Sci. Technol., 14: 152
    13.Fruchtman A. 2009, Plasma Sources Sci. Technol., 18: 025033
    14. Ahedo E. 2009, Phys. Plasmas, 16: 113503
    15. Ahedo E and Jaume Navalarro-Cavalle. 2013, Phys. Plasmas, 20: 043512
    16.Windisch T, Rahbarnia K, Grulke O and Klinger T. 2010, Plasma Sources Sci. Technol., 19: 055002
    17.Chen F F, Evans J D and Tynan G R. 2001, Plasma Sources Sci. Technol., 10: 236
    18. Gilland J, Breun R and Hershkowitz N. 1998, Plasma Source Sci. Technol., 7: 416
    19. Curreli D and Chen F F. 2011, Phys. Plasmas, 18: 113501
    20. Chen F F and Curreli D. 2013, Phys. Plasmas, 20: 057102
    21.Boswell R W. 1984, Plasma Phys. Control. Fusion, 26: 1147
    22. Chen F F. 1991, Plasma Phys. Control. Fusion, 33: 339
    23. Shamrai K P and Taranov V B. 1994, Plasma Phys. Control. Fusion, 36: 1719
    24. Shamrai K P and Taranov V B. 1996, Plasma Sources Sci. Technol., 5: 474
    25. Shamrai K P and Shunjiro Shinohara. 2001, Phys. Plasmas, 8: 4659
    26. Fruchtman A. 2008, IEEE Trans. Plasma Sci., 36: 403
    27.Hooper E B. 1993, J. Prop. Power, 9: 757
    28.Ahedo E and Merino M. 2010, Phys. Plasmas, 17: 073501
    29.Cho Suwon. 1996, Phys. Plasmas, 3: 4268

Catalog

    Article views (468) PDF downloads (719) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return