Advanced Search+
ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05
Citation: ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05

Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge

Funds: supported by National Natural Science Foundation of China (No.11275034) and Liaoning Province Natural Science Foundation of China (No.201200615)
More Information
  • Received Date: August 21, 2013
  • As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2...) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn’t remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.
  • 1 Roth J R, Rahel J, Dai X, et al. 2005, J. Phys. D:Appl. Phys., 38: 555;
    2 Fridman G, Shereshevsky A, Jost M M, et al. 2007,Plasma Chem. Plasma Process., 27: 163;
    3 Shashurin A, Keidar M, Bronnikov S, et al. 2008, Appl.Phys. Lett., 93: 181501;
    4 Lu X, Xiong Z, Zhao F, et al. 2009, Appl. Phys. Lett.,95: 181501;
    5 Golubovskii Y B, Maiorov V A, Behnke J, et al. 2003,J. Phys. D: Appl. Phys., 36: 39;
    6 Shin J, Raja L L. 2003, J. Appl. Phys., 94: 7408;
    7 Dedrick J, Boswell R W, Rabat H, et al. 2012, Plasma Sources Sci. Technol., 21: 055016;
    8 Zhang P, Kortshagen U. 2006, J. Phys. D: Appl. Phys.,39: 153;
    9 Gherardi N, Gouda G, Gat E, et al. 2000, Plasma Sources Sci. Technol., 9: 340;
    10 Dong L F, Liu W L, Wang H F, et al. 2007, Phys. Rev.E, 76: 046210;
    11 Bernecker B, Callegari T, Boeuf J P. 2011, J. Phys. D:Appl. Phys., 44: 262002 116 ZHANG Jiao et al.: 2D Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation ;
    12 Wang D Z,Wang Y H, Liu C S. 2006, Thin Solid Films,506-507: 384;
    13 Sublet A, Ding C, Dorier J L, et al. 2006, Plasma Sources Sci. Technol., 15: 627;
    14 Chen B, Tan Z Y, Song X X, et al. 2011, IEEE Trans.Plasma Sci., 39: 1949;
    15 Wang Y H, Zhang Y T, Wang D Z, et al. 2007, Appl.Phys. Lett., 90: 071501;
    16 Shi H, Wang Y H, Wang D Z. 2008, Phys. Plasmas,15: 122306;
    17 Zhang J, Wang Y H, Wang D Z. 2010, Phys. Plasmas,17: 043507;
    18 Zhang J, Wang Y H, Wang D Z. 2011, Thin Solid Films, 519: 7020;
    19 Zhang D Z, Wang Y H, Sun J Z, et al. 2012, Phys.Plasmas, 19: 043503;
    20 Walsh J L, Iza F, Janson N B, et al. 2012, PlasmaSources Sci. Technol., 21: 034008;
    21 Zhang J, Wang Y H, Wang D Z. 2013, Phys. Plasmas,20: 082315;
    22 Ward A L. 1962, Appl. Phys., 33: 2789;
    23 Deloche R, Monchicourt P, Cheret M, et al. 1976,Phys. Rev. A, 13: 1140;
    24 Cheung P Y, Wong A Y. 1987, Phys. Rev. Lett., 59:551;
    25 Shkurenkov I A, MankelevichY A, Rakhimova T V.2011, Eur. Phys. J. D, 61: 95;
    26 Zhang D Z, Wang Y H, Wang D Z. 2013, Phys. Plas-mas, 20: 063504;
    27 Mangolini L, Orlov K, Kortshagen U, et al. 2002, Appl.Phys. Lett., 80: 1722;
    28 Zhang Y T, Wang D Z, Kong M G. 2005, J. Appl.Phys., 98: 113308;
    29 Anderson C, Hur M, Zhang P, et al. 2004, J. Appl.Phys., 96: 1835;
    30 Ding W X, Huang W, Wang X D, et al. 1993, Phys.Rev. Lett., 70: 170;
    31 Cheung P Y, Donovan S, Wong A Y. 1988, Phys. Rev.Lett., 61: 1360
  • Related Articles

    [1]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Xiaoming ZHU (朱晓鸣), Heng GUO (郭恒), Jianfeng ZHOU (周建锋), Xiaofei ZHANG (张晓菲), Jian CHEN (陈坚), Jing LI (李静), Heping LI (李和平), Jianguo TAN (谭建国). Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces[J]. Plasma Science and Technology, 2018, 20(4): 44010-044010. DOI: 10.1088/2058-6272/aaa6be
    [4]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [5]Yu WANG (王羽), Lu QU (屈路), Tianjun SI (姒天军), Yang NI (倪阳), Jianwei XU (徐建伟), Xishan WEN (文习山). Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps[J]. Plasma Science and Technology, 2017, 19(6): 64016-064016. DOI: 10.1088/2058-6272/aa6743
    [6]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [7]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [8]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [9]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.

Catalog

    Article views (166) PDF downloads (1190) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return