Advanced Search+
ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
Citation: ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07

Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure

More Information
  • Received Date: August 20, 2013
  • The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm
    [(3s 2 3p 5 )5p → (3s 2 3p 5 )4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm
    [(3s 2 3p 5 )4p → (3s 2 3p 5 )4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N 2 (C 3 Π u →B 3 Π g )) to 391.4 nm (N +2 (B 2 Σ+ u →X 2 Σ+ g )). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.
  • 1 Ji L Y, Zhu Y C, Wang H C, et al. 2011, Removal of mixed volatile organic compounds using bipolar pulsed DBD. Second International Conference on Mechanic Automation and Control Engineering, Inner Mongo-lia, China, p. 2429;
    2 Thevenet F, Guaitella O, Puzenat E, et al. 2007, Catal.Today, 122: 186;
    3 Chang C L, Lin T S. 2005, Plasma Chem. Plasma Pro-cess., 25: 227;
    4 Dong B, Bauchire J M, Pouvesle J M, et al. 2008, J.Phys. D: Appl. Phys., 41: 155201;
    5 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    6 Jolibois J, Zouzou N, Moreau E, et al. 2011, J. Elec-trostat., 69: 522;
    7 Starikovskaia S M, Allegraud K, Guaitella O, et al.2010, J. Phys. D: Appl. Phys., 43: 124007;
    8 Unfer T, Boeuf J P. 2010, Plasma Phys. Control. Fu-sion, 52: 124019;
    9 Allegraud K, Guaitella O, Rousseau A. 2007, J. Phys.D: Appl. Phys., 40: 7698;
    10 Enloe C L, Font G I, McLaughlin T E, et al. 2008,AIAA Journal, 46: 2730;
    11 Kang W S, Park J M, Kim Y, et al. 2003, IEEE Trans-actions on Plasma Science, 31: 504;
    12 Enloe C L, McLaughlin T E, Van Dyken R D, et al.2004, AIAA Journal, 42: 589;
    13 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    14 Gibalov V I, Pietsch G J. 2004, J. Phys. D: Appl.Phys., 37: 2082;
    15 Kim Y, Hong S H, Cha M S, et al. 2003, Journal of Advanced Oxidation Technologies, 6: 17;
    16 Morgan W L, Penetrante B M. 1990, Comput. Phys. Commun., 58: 127;
    17 Gallimberti I, Hepworth J K, Klewe R C. 1974, J.Phys. D: Appl. Phys., 7: 880;
    18 http://www.nist.gov/pml/data/asd.cfm ;
    19 Otorbaev D K, Buuron A J M, Guerassimov N T, et al.1994, J. Appl. Phys., 76: 4499;
    20 Donnelly V M. 2004, J. Phys. D: Appl. Phys., 37: R217;
    21 Gudmundsson J T, Alami J, Helmersson U. 2001,Appl. Phys. Lett., 78: 3427;
    22 Schabel M J, Donnelly V M, Kornblit A, et al. 2002,J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films,20: 555;
    23 Spyrou N, Manassis C. 1989, J. Phys. D: Appl. Phys.,22: 120;
    24 Gibalov V I, Murata T, Pietsch G J. 2002, Param-eters of barrier discharges in coplanar arrangements.International Symposium on High Pressure Low Tem-perature Plasma Chemistry, Puhajarve Estonia

Catalog

    Article views (150) PDF downloads (1393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return