Advanced Search+
ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
Citation: ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07

Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure

More Information
  • Received Date: August 20, 2013
  • The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm
    [(3s 2 3p 5 )5p → (3s 2 3p 5 )4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm
    [(3s 2 3p 5 )4p → (3s 2 3p 5 )4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N 2 (C 3 Π u →B 3 Π g )) to 391.4 nm (N +2 (B 2 Σ+ u →X 2 Σ+ g )). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.
  • 1 Ji L Y, Zhu Y C, Wang H C, et al. 2011, Removal of mixed volatile organic compounds using bipolar pulsed DBD. Second International Conference on Mechanic Automation and Control Engineering, Inner Mongo-lia, China, p. 2429;
    2 Thevenet F, Guaitella O, Puzenat E, et al. 2007, Catal.Today, 122: 186;
    3 Chang C L, Lin T S. 2005, Plasma Chem. Plasma Pro-cess., 25: 227;
    4 Dong B, Bauchire J M, Pouvesle J M, et al. 2008, J.Phys. D: Appl. Phys., 41: 155201;
    5 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    6 Jolibois J, Zouzou N, Moreau E, et al. 2011, J. Elec-trostat., 69: 522;
    7 Starikovskaia S M, Allegraud K, Guaitella O, et al.2010, J. Phys. D: Appl. Phys., 43: 124007;
    8 Unfer T, Boeuf J P. 2010, Plasma Phys. Control. Fu-sion, 52: 124019;
    9 Allegraud K, Guaitella O, Rousseau A. 2007, J. Phys.D: Appl. Phys., 40: 7698;
    10 Enloe C L, Font G I, McLaughlin T E, et al. 2008,AIAA Journal, 46: 2730;
    11 Kang W S, Park J M, Kim Y, et al. 2003, IEEE Trans-actions on Plasma Science, 31: 504;
    12 Enloe C L, McLaughlin T E, Van Dyken R D, et al.2004, AIAA Journal, 42: 589;
    13 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    14 Gibalov V I, Pietsch G J. 2004, J. Phys. D: Appl.Phys., 37: 2082;
    15 Kim Y, Hong S H, Cha M S, et al. 2003, Journal of Advanced Oxidation Technologies, 6: 17;
    16 Morgan W L, Penetrante B M. 1990, Comput. Phys. Commun., 58: 127;
    17 Gallimberti I, Hepworth J K, Klewe R C. 1974, J.Phys. D: Appl. Phys., 7: 880;
    18 http://www.nist.gov/pml/data/asd.cfm ;
    19 Otorbaev D K, Buuron A J M, Guerassimov N T, et al.1994, J. Appl. Phys., 76: 4499;
    20 Donnelly V M. 2004, J. Phys. D: Appl. Phys., 37: R217;
    21 Gudmundsson J T, Alami J, Helmersson U. 2001,Appl. Phys. Lett., 78: 3427;
    22 Schabel M J, Donnelly V M, Kornblit A, et al. 2002,J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films,20: 555;
    23 Spyrou N, Manassis C. 1989, J. Phys. D: Appl. Phys.,22: 120;
    24 Gibalov V I, Murata T, Pietsch G J. 2002, Param-eters of barrier discharges in coplanar arrangements.International Symposium on High Pressure Low Tem-perature Plasma Chemistry, Puhajarve Estonia
  • Related Articles

    [1]Junjie ZHANG, Xin ZHANG, Guoliang PENG, Zeping REN. A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms[J]. Plasma Science and Technology, 2022, 24(5): 054007. DOI: 10.1088/2058-6272/ac5f39
    [2]Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
    [3]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [4]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [5]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [6]WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10
    [7]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (150) PDF downloads (1393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return