Advanced Search+
CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15
Citation: CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15

Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak

  • In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, one of the most important issues is the lifetime-limiting effects due to the pulsed operation mode. Fatigue is one of the major failure modes to be considered in mechanical design, and pulsed operation imposes stress with significant alternating components on the support structure (SS). Therefore, the reliability of the whole device is strongly affected by the stress and fatigue characteristic of the SS as the interface structure. This article introduces the SS design and details the fatigue life calculation methods based on the different characteristics of the sub-structures. The fatigue life in hazardous areas of the toroidal field coils anti-torque structure (TFCs-ATs) has been determined by non-linear analysis results. And with the stress- time history data of the vacuum vessel & poloidal field coils support structure (VV&PFCs SS), the fatigue analysis of the hot spots has been completed based on rain-flow counting method and linear cumulative damage method. The calculated minimum fatigue life on TFCs-ATs and VV&PFCs SS is 4.743E+05 and 1.805E+06 cycles, respectively. And the calculated fatigue life on sub-structures can meet the required life for HL-2M tokamak: 1.0E+05 cycles.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return