Advanced Search+
XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
Citation: XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04

PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110003, 2011GB110001 and 2013GB107004), National Natural Science Foundation of China (Nos. 11005125, 11205198 and 11375010)
More Information
  • Received Date: August 26, 2013
  • A 3D Monte Carlo (MC) code PIC- EDDY, based on EDDY (erosion and deposition dynamic simulation) code, was used to investigate the redeposition of different impurities in the gaps of C tiles. By incorporating the rate coefficients of beryllium (Be) and tungsten (W) into the code, we obtain deposition profiles of hydrocarbon, beryllium and tungsten particles in the toroidal and poloidal gaps, respectively. The redeposition rate of tungsten was found to be higher than those of other impurities in the gaps, except at the bottom, due to its easier local deposition within one gyroradius. Due to the effect of reflection coefficients of hydrocarbon fragments on graphite, fewer hydrocarbons were resided at the entrance while more were deposited on the sides of the gap. At elevated plasma temperatures (such as 30 eV), asymmetric deposition distributions were observed between the toroidal and poloidal gaps due to the dominant ionized particles. Ions were mainly deposited within 1 mm depth inside gaps, and the bottom deposition particles were almost all neutrals.
  • 1.Tivey R, Akiba M, Driemeyer D, et al. 2001, Fusion Engineering and Design, 55: 219
    2 Daenner W, Merola M, Lorenzetto P, et al. 2002, Fu-sion Engineering and Design, 61-62: 61
    3 Luo G N, Zhang X D, Yao D M, et al. 2007, Physica Scripta, T128: 1
    4 Luo G, Li Q, Chen J, et al. 2012, Fusion Science and Technology, 62: 9
    5 Hong S H, Lee K S, Kim K P, et al. 2011, Journal of Nuclear Materials, 415: S1050
    6 Hong S H, Park S J, Choe J M, et al. 2013, Journal of Nuclear Materials, 438: S698
    7 Pitts R A, Carpentier S, Escourbiac F, et al. 2013, Journal of Nuclear Materials, 438: S48
    8 Doerner R P, Baldwin M J, De Temmerman G, et al. 2009, Nuclear Fusion, 49: 035002
    9 Temmerman G D, Baldwin M, Doerner R, et al. 2008, Nuclear Fusion, 48: 075008
    10 Sugiyama K, Mayer M, Rohde V, et al. 2010, Nuclear Fusion, 50: 035001
    11 Rubel M J, Coad J P and Pitts R A. 2007, Journal of Nuclear Materials, 367-370: 1432
    12 Yoshida M, Tanabe T, Adachi A, et al. 2013, Journal of Nuclear Materials, 438: S1261
    13.Skinner C H, Hogan J T, Brooks J N, et al. 1999, Journal of Nuclear Materials, 266: 940
    14.Andrew P, Brennan P, Coad J, et al. 1999, Fusion En-gineering and Design, 47: 233
    15.Lipschultz B, Bonnin X, Counsell G, et al. 2007, Nu-clear Fusion, 47: 1189
    16.Inai K, Tomita Y, Kawamura G, et al. 2010, Fusion Engineering and Design, 85: 1416
    17.Komm M, Dejarnac R, Gunn J P, et al. 2013, Plasma Physics and Controlled Fusion, 55: 025006
    18.Matveev D, Kirschner A, Litnovsky A, et al. 2010, Plasma Physics and Controlled Fusion, 52: 075007
    19.Bohdansky J. 1984, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2: 587
    20.Brooks J N. 1990, Physics of Fluids B: Plasma Physics, 2: 1858
    21 Ohya K, Kikuhara Y, Inai K, et al. 2009, Journal of Nuclear Materials, 390-391: 72
    22 Janev R K. 2002, Collision processes of hydrocarbon species in hydrogen plasmas: I. The methane family, No. Juel-3966, Julich, Forschungszentrum
    23 Janev R K and Reiter D. 2002, Collision processes of hydrocarbon species in hydrogen plasmas. II. The ethane and propane families, No.Juel-4005, Julich,Forschungszentrum
    24.Boley C, Brooks J and Kim Y. 1983, Charge state of sputtered impurity ions near a limiter or divertor in a tokamak, No. ANL/FPP/TM-171, Argonne National Lab., IL (USA)
    25.Bell K, Gilbody H, Hughes J, et al. 1983, Phys. Chem. Ref. Data, 12: 891
    26.Ohya K. 2006, Physica Scripta, T124: 70
    27.Bohdansky J, Roth J and Bay H L. 1980, Journal of Applied Physics, 51: 2861
    28.Naujoks D. 2006, Plasma-Material Interaction in Con-trolled Fusion. Springer, Berlin Heidelberg
    29.Federici G, Skinner C H, Brooks J N, et al. 2001, Nu-clear Fusion, 41: 1967
    30.Litnovsky A, Wienhold P, Philipps V, et al. 2009, Jour-nal of Nuclear Materials, 390-391: 556
    31.Hsu W L, Mills B E, Ehrhardt A B, et al. 1989, Journal of Vacuum Science & Technology A, 7: 1065
    32.Ohya K and Inai K. 2010, Japanese Journal of Applied Physics, 49: 096201
    33.Ohya K, Tanabe T and Kawata J. 2006, Fusion Engi-neering and Design, 81: 205

Catalog

    Article views (160) PDF downloads (1146) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return