Advanced Search+
YU Jie(俞洁), YANG Gege(杨格格), PAN Yuanpei(潘元沛), LU Quanfang(陆泉芳), YANG Wu(杨武), GAO Jinzhang(高锦章). Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow- Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes[J]. Plasma Science and Technology, 2014, 16(8): 767-776. DOI: 10.1088/1009-0630/16/8/07
Citation: YU Jie(俞洁), YANG Gege(杨格格), PAN Yuanpei(潘元沛), LU Quanfang(陆泉芳), YANG Wu(杨武), GAO Jinzhang(高锦章). Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow- Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes[J]. Plasma Science and Technology, 2014, 16(8): 767-776. DOI: 10.1088/1009-0630/16/8/07

Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow- Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes

Funds: supported by National Natural Science Foundation of China (No. 21367023), Natural Science Foundation of Gansu Province, China (No. 1208RJZA161) and Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University of China (Nos. NWNU-LKQN-10-16 and NWNU-LKQN-12-9)
More Information
  • Received Date: June 20, 2013
  • In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N’-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.
  • 1.Nethaji S, Sivasamy A, Thennarasu G, et al. 2010, J.Hazard. Mater., 181: 271.
    2.Mahmoodi N M, Hayati B, Arami M, et al. 2011, Desalination, 275: 93.
    3.Rafatullah M, Sulaiman O, Hashim R, et al. 2010, J.Hazard. Mater., 177: 70.
    4.Karla A G G, Leandro V A G, T.ania M S M, et al.2012, Dyes Pigm., 92: 967.
    5.Yan L F, Qi S, Gong X L, et al. 2009, Clean: Soil, Air,Water, 37: 392.
    6.Janoˇs P, ˇSm′.dov′a V. 2005, J. Colloid. Interf. Sci., 291:19.
    7.Crini G. 2006, Bioresource Technol., 97: 1061.
    8.S.olpan D, Duran S, Saraydin D, et al. 2003, Radiat.Phys. Chem., 66: 117.
    9.Li S F, Zhang H, Feng J T, et al. 2011, Desalination,280: 95.
    10.Ismail L F M, Maziad N A, Abo-Farha S A. 2005,Polym. Int., 54: 58.
    11.Liu Y, Zheng Y, Wang A Q. 2010, J. Environ. SciChina, 22: 486.
    12.Wang L, Zhang J P, Wang A Q. 2011, Desalination,266: 33.
    13.Wang L, Zhang J P, Wang A Q. 2008, Colloid. Surface.A, 322: 47.
    14.Xing Y, Sun X M, Li B H. 2009, Polym. Eng. Sci., 49:272.
    15.Wang Y S, Zeng L, Ren X F, et al. 2010, J. Environ.Sci-China, 22: 7.
    16.Li S F. 2010, Bioresource Technol., 101: 2197.
    17.Bekiari V, Sotiropoulou M, Bokias G, et al. 2008, Colloid. Surface A, 312: 214.
    18.Zhou X J, Weng L H, Chen Q, et al. 2003, Polym. Int.,52: 1153.
    19.Orozco-Guare.no.E,.Santiago-Guti′errez.F,.Mor′an Quiroz J L, et al. 2010, J. Colloid. Interf. Sci., 349:583.
    20.Liu Z S, Rempel G L. 1997, J Appl. Poly. Sci., 64:1345.
    21.Gao J Z, Wang X Y, Hu Z A, et al. 2001, Plasma Sci.Technol., 3: 765.
    22.Singh R, Gangal U, Sengupta.S.K. 2012,.Plasma Chem. Plasma Process., 32: 609.
    23.Gangal U, Srivastava M, Sengupta S K. 2010, Plasma.Chem. Plasma Process., 30: 299.
    24.Harada K, Iwaski T. 1974, Nature, 250: 426.
    25.Sengupta S K, Sandhir U, Misra N. 2001, J. Polym.Sci. Chem., 39: 1584.
    26.Malik.M.A, Gha.ar A,.Malik S A. 2001,.Plasma.Sources Sci. Technol., 10: 82.
    27.Lu Q F, Yu J, Gao J Z, et al. 2005, Plasma Sci. Technol., 7: 2856.
    28.Friedrich J F, Mix R, Schulze R D, et al. 2008, Plasma.Process. Polym., 5: 407.
    29.Malik M A, Ahmed M, Rehman E, et al. 2003, Plasma.Polym., 8: 271.
    30.Lu Q F, Yu J, Gao J Z, et al. 2011, Plasma. Process.Polym., 8: 803.
    31.Lu Q F, Yu J, Gao J Z, et al. 2012, Cent. Eur. J.Chem., 10: 1349.
    32.Yu J, Pan Y P, Lu Q F, et al. 2013, Plasma Chem.Plasma Process., 33: 219.
    33.Kokufuta E, Shibasaki T, Sodeyama T, et al. 1985,Chem. Lett., 1569.
    34.Li A, Wang A Q. 2005, Eur. Polyme. J., 41: 1630.
    35.Wu J H, Wei Y L, Lin J M, et al. 2003, Polymer, 44:6513.
    36.Hameed B H, El-Khaiary M I. 2008, J. Hazard. Mater.,153: 701.
    37.Crini G, Peindy H N, Gimbert F, et al. 2007, Sep.Puri.. Technol., 53: 97.
    38.Chiou M S, Ho P Y, Li H Y. 2004, Dyes Pigm., 60: 69.
    39.Crini G, Gimbert F, Robert C, et al. 2008, J. Hazard.Mater., 153: 96.
    40.Wong Y C, Szeto Y S, Cheung W H, et al. 2004, Process Biochem., 39: 693.
  • Related Articles

    [1]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [2]DUAN Jianjin (段剑金), HU Jue (胡觉), XU Lin (许林), WEN Yuanbin (温元斌), ZHANG Chao (张超), MENG Yuedong (孟月东), ZHANG Chengxu (张呈旭). A Novel TiO 2 Combined Pulsed Diaphragm Discharge System for Phenol Degradation[J]. Plasma Science and Technology, 2015, 17(4): 303-308. DOI: 10.1088/1009-0630/17/4/08
    [3]LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07
    [4]SHEN Yongjun(沈拥军), LEI Lecheng(雷乐成), ZHANG Xingwang(张兴旺), DING Jiandong(丁建东). Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors[J]. Plasma Science and Technology, 2014, 16(11): 1020-1031. DOI: 10.1088/1009-0630/16/11/05
    [5]RAO Zhipeng(饶志鹏), WAN Jun(万军), LI Chaobo(李超波), CHEN Bo(陈波), LIU Jian(刘键), HUANG Chengqiang(黄成强), XIA Yang(夏洋). In-Situ Nitrogen Doping of the TiO 2 Photocatalyst Deposited by PEALD for Visible Light Activity[J]. Plasma Science and Technology, 2014, 16(3): 239-243. DOI: 10.1088/1009-0630/16/3/12
    [6]WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07
    [7]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [8]GAO Jin (高进), GU Pingdao (顾平道), YUAN Li (袁里), ZHONG Fangchuan (钟方川). Degradation of Dye Wastewater by ns-Pulse DBD Plasma[J]. Plasma Science and Technology, 2013, 15(9): 928-934. DOI: 10.1088/1009-0630/15/9/18
    [9]S. D. KIM, D. I. JANG, B. J. LIM, S. B. LEE, Y. S. MOK. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes[J]. Plasma Science and Technology, 2013, 15(7): 659-662. DOI: 10.1088/1009-0630/15/7/11
    [10]JI Liangliang(吉亮亮), ZOU Shuai(邹帅), SHEN Mingrong(沈明荣), XIN Yu(辛煜). Radio Frequency Underwater Discharge Operation and Its Application to Congo Red Degradation[J]. Plasma Science and Technology, 2012, 14(2): 111-117. DOI: 10.1088/1009-0630/14/2/06

Catalog

    Article views (197) PDF downloads (1163) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return