Advanced Search+
DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
Citation: DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04

Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

Funds: supported by National Natural Science Foundation of China (Nos.10725523, 10990212, 11021565, 11075181 and 11105177), in part by National Magnetic Confinement Fusion Science Program of China (Nos.2010GB104001, 2011GB101001, 2011GB101004, 2011GB107001, 2012GB101000, 2013GB107003 and 2013GB112002)
More Information
  • Received Date: April 02, 2013
  • Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang’s theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST.
  • 1 Luce T C, Petty C C and De Haas J C M. 1992, Phys. Rev. Lett., 68: 52
    2 Petty C C and Luce T C. 1994, Nucl. Fusion, 34:121
    3 Mantica P, Gorini G, Hogeweij G M D, et al. 2000,Phys. Rev. Lett., 85: 4534
    4 Mantica P, Ryter F, Capuano C, et al. 2006, Plasma Phys. Control. Fusion, 48: 385
    5 Song S D, Zou X L, Giruzzi G, et al. 2012, Nucl. Fusion, 52: 033006
    6 Budny R V. 2008, Nucl. Fusion, 48: 075005
    7 Kinsey J E, Staebler G M and Waltz R E. 2005, Phys.Plasmas, 12: 052503
    8 Wang L and Diamond P H. 2011, Nucl. Fusion, 51:083006
    9 Lao L L, John H St, Stambaugh R D, et al. 1985, Nucl.Fusion, 25: 1611
    10 Brambilla M. 1999, Plasma Phys. Control. Fusion, 41:1
    11 Zhang X J, Zhao Y P, Wan B N, et al. 2012, Nucl.Fusion, 52: 082003
    12 Zhang W Y, Li Y D, Zhang X J, et al. 2012, Plasma Phys. Control. Fusion, 54: 035005
    13 Ding S, Wan B, Zhang X, et al. 2011, Plasma Phys.Control. Fusion, 53: 015007
    14 Mantica P, Thyagaraja A,Weiland J, et al. 2005, Phys.Rev. Lett., 95: 185002
  • Related Articles

    [1]Biao HUANG, Xuan ZHOU, She WANG, Chijie ZHUANG, Rong ZENG, Le DENG. Observation and analysis of positive leader re-illumination in a 10 m ultra-high voltage transmission line gap under switching impulse voltages[J]. Plasma Science and Technology, 2024, 26(10): 105502. DOI: 10.1088/2058-6272/ad56cb
    [2]Zhiwei LI, Ting LEI, Yu SU, Xiuyuan YAO, Bingxue YANG, Delong LIU, Fangcheng LV, Yujian DING. Dynamic propagation velocity of a positive streamer in a 3 m air gap under lightning impulse voltage[J]. Plasma Science and Technology, 2024, 26(4): 045501. DOI: 10.1088/2058-6272/ad0d51
    [3]Jianghai GENG, Guo LIN, Ping WANG, Yujian DING, Yang DING, Hua YU. Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude[J]. Plasma Science and Technology, 2024, 26(1): 015501. DOI: 10.1088/2058-6272/ad0c1c
    [4]Yuwei FU, Mengsha HE, Chi CHEN, Chuang WANG, Zaiqin ZHANG. Effects of rod radius and voltage on streamer discharge in a short air gap[J]. Plasma Science and Technology, 2023, 25(8): 085401. DOI: 10.1088/2058-6272/acc16c
    [5]Jianghai GENG, Quansheng WANG, Xiaomin Liu, Ping WANG, Fangcheng LYU, Yujian DING. Dynamic development model for long gap discharge streamer-leader system based on fractal theory[J]. Plasma Science and Technology, 2022, 24(9): 095402. DOI: 10.1088/2058-6272/ac6cd2
    [6]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [7]Yaqi YANG (杨亚奇), Weiguo LI (李卫国), Yu XIA (夏喻), Chuangye YUAN (袁创业). Characteristics of long-gap AC streamer discharges under low pressure conditions[J]. Plasma Science and Technology, 2017, 19(10): 105401. DOI: 10.1088/2058-6272/aa79fe
    [8]Xiaoqiong WEN (温小琼), Qian LI (李倩), Jingsen LI (李井森), Chunsheng REN (任春生). Quantitative relationship between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge in water[J]. Plasma Science and Technology, 2017, 19(8): 85401-085401. DOI: 10.1088/2058-6272/aa6bf0
    [9]Joseph-Marie PLEWA, Olivier DUCASSE, Philippe DESSANTE, Carolyn JACOBS, Olivier EICHWALD, Nicolas RENON, Mohammed YOUSFI. Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation[J]. Plasma Science and Technology, 2016, 18(5): 538-543. DOI: 10.1088/1009-0630/18/5/16
    [10]GUAN Yonggang (关永刚), CAI Yuanji (蔡元纪), CHEN Weijiang (陈维江), LIU Weidong (刘卫东), LI Zhibing (李志兵), YUE Gongchang (岳功昌), ZHANG Junmin (张俊民). Repeated Strike Process During Disconnector Operation in Ultra-High Voltage Gas-Insulated Switchgear[J]. Plasma Science and Technology, 2016, 18(3): 247-253. DOI: 10.1088/1009-0630/18/3/06

Catalog

    Article views (215) PDF downloads (1342) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return