Advanced Search+
Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
Citation: Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06

Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe

More Information
  • Received Date: September 23, 2013
  • An RF compensated cylindrical Langmuir probe system has been developed and used to characterize an RF capacitive two temperature plasma discharge in a stochastic mode. The novelty of the work presented here is the use of the driven electrode (cathode) without ground shield. Measurements of the electron energy distribution function (EEDF) and plasma parameters were achieved under the following conditions: 50 W of RF power and 5×10 −2 mbar of argon pressure. The probe measurements are performed at 3 cm above the electrode and the probe was shifted radially (r direction) from the center (r = 0 cm) of the inter-electrodes region towards the chamber wall (R = 10.75 cm). The results show that the EEDF is bi-Maxwellian and its shape remains the same through the scanned region. The farther the probe from the central region, the lower the EEDF maximum. The plasma density is observed to decrease according to a Gaussian profile along the radial direction and falls to 50% of its maximum when close to the cathode edge (r = 5.5 cm). At the same time the effective electron temperature remains constant for r<4 cm and increases for r≥4 cm. The high-temperature and low-temperature electrons’ densities and temperatures are also discussed in the article.
  • 1 Grill A, Meyerson B S, Patel V V. 1990, IBM J. Res.Dev., 34: 849
    2 Lee H S, Lee Y S, Seo S H, et al. 2010, Appl. Phys.Lett., 97: 081503
    3 Godyak V A, Piejak R B, Alexandrovich B M. 1992,Plasma Sources Sci. Technol., 1: 36
    4 Hopkins M B. 1995, J. Res. Natl. Inst. Stand. Technol.,100: 415
    5 Schulze J, Kampschulte T, Luggenh?olscher D, Czarnetzki U. 2007, Journal of Physics: Conference Series,86: 012010
    6 Overzet L J, Hopkins M B. 1993, Appl. Phys. Lett.,63: 2484
    7 Gagné R R G, Cantin A. 1972, J. Appl. Phys., 43:2639
    8 Chen F F. 2006, Plasma Sources Sci. Technol., 15: 773
    9 Overzet L J, Hopkins M B. 1993, J. Appl. Phys., 74 :4323
    10 Schulze J, Heil B G, Luggenh?olscher D, Brinkmann R P, Czarnetzki U. 2008, J. Phys. D: Appl. Phys., 41:195212
    11 Turner M M. 2009, J. Phys. D, 42: 194008
    12 Mussenbrock T, et al. 2008, Phys. Rev. Lett., 101:085004
    13 Czarnetzki U, Mussenbrock T, Brinkmann R P. 2006,Physics of Plasmas, 13: 123503
    14 Ohtsu Y, Urasaki H. 2010, Plasma Sources Sci. Technol., 19: 045012
    15 Mott-Smith H M, Langmuir I. 1926, Phys. Rev., 28:727
    16 Mendil D, Lahmar H, Ouadjaout D, et al. 2011, Advanced Materials Research, 227: 204
    17 Lempériμere G, Poitevin G M, Fourrier C. 1978, J.Phys. D: Appl. Phys., 11: 193
    18 Lieberman J G, Lichtenberg A J. 1994, Principles of Plasma Discharges and Materials Processing. Eds. J.Willey, New York
    19 Chen F F. 2001, Physics of Plasmas, 8: 3029
    20 Chen F F. 2009, Plasma Sources Sci. Technol., 18:035012
    21 Allen J E. 1992, Physica Scripta, 45: 497
    22 Druyvesteyn M J. 1930, Z. Phys., 64: 781
    23 Godyak V A, Piejak R B. 1992, J. Appl. Phys., 73:3657
    24 Godyak V, Demidov V. 2011, J. Phys. D, 44: 233001
    25 Tatanova M, Thieme G, Basner R, et al. 2006, PlasmaSources Sci. Technol., 15: 507
    26 Lawrence J Overzet, Michael B Hopkins. 1993, Appl.Phys. Lett., 63: 2484
    27 Chen F F. 2001, Physics of Plasmas, 8: 3029

Catalog

    Article views (226) PDF downloads (1264) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return