Advanced Search+
QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
Citation: QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01

Q-Band X-Mode Reflectometry and Density Profile Reconstruction

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB106000 and 2014GB106003), and National Natural Science Foundation of China (Nos. 11275234, 11305215, 11305208)
More Information
  • Received Date: December 11, 2014
  • By installing an X-mode polarized Q-band (32-56 GHz) reflectometry at the low field side on EAST, the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas. A Monte Carlo procedure has been developed to analyze the density profiles by considering the error of time delay measured by reflectometry. By combining this Q-band and previously developed V-and W-band reflectometries, the density pro?les from edge to core can be measured in most EAST experiments. The line integrated densities deduced from density pro?les measured by reflectometry are consistent with those directly measured by a horizontal interferometer. The density pedestal measured by reflectometry shows a clear crash during an ELM (edge localized mode) event, after which the pedestal gradually increases and recovers in 10 ms and then remains little changed up to the next ELM.
  • 1 Mazzucato E. 1998, Rev. Sci. Instrum., 69: 2201 2 Nazikian R, Kramer G J and Valeo E. 2001, Phys.Plasmas, 8: 1840 3 Laviron C, Donn′ e A J H, Manso M E, et al. 1996,Plasma Phys. Control. Fusion, 38: 905 4 Varela P, Manso M E, Silva A, et al. 2006, Nucl. Fusion, 46: S693 5 Wang G, Zeng L, Doyle E J, et al. 2003, Rev. Sci.Instrum., 74: 1525 6 Sirinelli A, Alper B, Bottereau C, et al. 2010, Rev. Sci.Instrum., 81: 10D939 7 Clairet F, Bottereau C, Chareau J M, et al. 2003, Rev.Sci. Instrum., 74: 1481 8 Tokuzawa T, Kawahata K, Pavlichenko R O, et al.2001, Rev. Sci. Instrum., 72: 328 9 Cunningham G. 2008, Rev. Sci. Instrum., 79: 083501 10 Zhong W L, Shi Z B, Huang X L, et al. 2014, Rev. Sci.Instrum., 85: 013507 11 Seo Seong-Heon, Park Jinhyung, Wi H M, et al. 2013,Rev. Sci. Instrum., 84: 084702 12 Zhang Shoubiao, Gao Xiang, Ling Bili, et al. 2014,Plasma Science and Technology, 16: 311 13 Wang Y M, Gao X, Ling B L, et al. 2013, Fusion Engineering and Design, 88: 2950 14 Clairet F, Bottereau C, Chareau J M, et al. 2001,Plasma Phys. Control. Fusion, 43: 429 15 Porter G D, Davies S, LaBombard B, et al. 1999, J.Nucl. Mater., 266-269: 917 16 Bottollier-Curtet H and Ichtchenko G. 1987, Rev. Sci.Instrum., 58: 539 17 Liu H Q, Jie Y X, Ding W X, et al. 2014, Rev. Sci.Instrum., 85: 11D405 18 Groebner R J, Baker D R, Burrell K H, et al. 2001,Nucl. Fusion, 41: 1789 19 Groebner R J, Osborne T H, Leonard A W, et al. 2009,Nucl. Fusion, 49: 045013 20 Burckhart A, Wolfrum E, Fischer R, et al. 2010, Plasma Phys. Control. Fusion, 52: 105010

Catalog

    Article views (430) PDF downloads (1109) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return