Advanced Search+
Apul N. DEV, Manoj K. DEKA, Rajesh SUBEDI, Jnanjyoti SARMA. Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons[J]. Plasma Science and Technology, 2015, 17(9): 721-727. DOI: 10.1088/1009-0630/17/9/01
Citation: Apul N. DEV, Manoj K. DEKA, Rajesh SUBEDI, Jnanjyoti SARMA. Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons[J]. Plasma Science and Technology, 2015, 17(9): 721-727. DOI: 10.1088/1009-0630/17/9/01

Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons

More Information
  • Received Date: December 18, 2014
  • In this article an investigation is presented on the properties of dust acoustic (DA) compressive solitary wave propagation in an adiabatic dusty plasma, including the effect of non-thermal positive and negative ions and non-isothermal electrons. The reductive perturbation method has been employed to derive the lower degree modified Kadomtsev-Petviashivili (mK-P), 3D Schamel-Korteweg-de-Vries equation or modified Kadomtsev-Petviashivili (mK-P) equations for dust acoustic solitary waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are non-isothermal electrons, singly charged positive and negative non-thermal ions and massive charged dust particles. The stationary analytical solutions of the lower degree mK-P and mK-P equations are numerically analyzed, where the e?ect of various dusty plasma con?stituents on DA solitary wave propagation is taken into account. It is observed that both the ions in dusty plasma play a key role in the formation of DA compressive solitary waves, and also the ion concentration and non-isothermal electrons control the transformation of the compressive potentials of the waves.
  • 1 Goertz C K. 1989, Rev. Geophys., 27: 271 2 Mamun A A, Shukla P K and Cairns R A. 1996, Phys.Plasmas, 3: 702 3 Misra A P, Chowdhury K R and Chowdhury A R.2007, Phys. Plasmas, 14: 012110 4 Ali S, Shukla P K. 2006, Phys. Plasmas, 13: 022313 5 Saini N S and Kourakis I. 2008, Phys. Plasmas, 15:123701 6 El-Labany S K, El-Taibany W F, Mamun A A, et al.2004, Phys. Plasmas, 11: 926 7 Zhang L P and Xue J K. 2008, Phys. Plasmas, 15:053706 8 Gill T S, Bains A S, Saini N S, et al. 2010, Phys. Lett.A, 374: 3210 9 Barkan A, D’Angelo N, and Merlino R L. 1994, Phys.Rev. Lett., 73: 3093 10 Adhikary N C, Deka M K and Bailung H. 2009, Phys.Plasmas, 16: 063701 11 Shukla P K and Silin V P. 1992, Phys. Scripta, 45: 508 12 Rao N N, Shukla P K and Yu M Y. 1990, Planet. Space Sci., 38: 543 13 Barkan A, Merlino R L, and D’Angelo D. 1995, Phys.Plasmas, 2: 3563 14 Mamun A A and Hassann M A. 2000, J. Plasma Phys.,63: 191 15 Lin M M and Duan W S. 2007, Chaos, Solitons and Fractals, 33: 1189 16 Mamun A A. 2008, Phys. Lett. A, 372: 884 17 Ma J X and Liu J. 1997, Phys. Plasmas, 4: 253 18 Mamun A A. 1999, Astrophys. Space Sci., 268: 443 19 Mamun A A and Shukla P K. 2001, Phys. Lett. A,290: 173 20 Mamun A A and Shukla P K. 2002, Phys. Scripta,T98: 107 21 Roy B, Sarkar S, Khan M, et al. 2005, Phys. Scripta,71: 644 22 Winske D, Gary S P, Jones E, et al. 1995, Geophys.Res. Lett., 22: 2069 23 Lin C and Lin M M. 2007, Adv. Stud. Theor. Phys.,1: 563 24 Mamun A A. 2008, Phys. Lett. A, 5: 686 25 Dev A N, Sarma J, Deka M K, et al. 2014, Plasma Sci.Technol., 17: 268 26 Schamel H. 1972, Plasma Phys., 14: 905 27 Schamel H. 1972, J. Plasma Phys., 9: 377 28 Schamel H. 1975, J. Plasma Phys., 13: 139 29 Schamel H. 1979, J. Physics Scripta, 20: 306 30 Schamel H and Bujarbarua S. 1980, Phys. Fluids, 23:2498 31 Mamun A A, Shukla P K and Cairns R A. 1996, Phys.Plasmas, 3: 2610 32 Dorranian D and Sabetkar A. 2012, Phys. Plasmas,19: 013702 33 Dev A N and Sarma J. 2014, International Journal of Technology, 4: 13 34 Adhikary N C, Deka M C, Dev A N, et al. 2014, Phys.Plasmas, 21: 083703

Catalog

    Article views (382) PDF downloads (962) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return