Advanced Search+
ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
Citation: ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02

Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

Funds: supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)
More Information
  • Received Date: December 03, 2015
  • The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.
  • 1 Roth J R, Nourgostar S, Bonds T A. 2007, IEEE Transactions on Plasma Science, 35: 233 2 Moon S Y, Han J W, Choe W. 2006, Thin Solid Films,506–507: 355 3 Chi Y Y, Zhang Y T. 2014, Plasma Science and Technology, 16: 582 4 Shao T, Zhang C, Long K, et al. 2010, Applied Surface Science, 256: 3888 5 Wang X H, Yang A J, Rong M Z. 2011, Plasma Science and Technology, 13: 724 6 Lu X, Laroussi M. 2006, Journal of Physics D: Applied Physics, 39: 1127 7 Shi J J, Kong M G. 2007, Applied Physics Letters, 90:101502 8 Moon S Y, Han J, Choe W. 2006, Physics of Plasmas 13: 013504 9 Shi J J, Zhang J, Qiu G, et al. 2008, Applied Physics Letters, 93: 041502 10 Balcon N, Aanesland A, Bosewell R. 2007, Plasma Sources Science and Technology, 16: 217 11 Shi J J, Cai Y Q, Zhang J, et al. 2009, Physics of Plasmas, 16: 070702 12 Park J, Henins I, Herrmann H W, et al. 2001, Journal of Applied Physics, 89: 15
  • Related Articles

    [1]Xucheng WANG, Shuhan GAO, Yuantao ZHANG. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium–oxygen admixtures[J]. Plasma Science and Technology, 2022, 24(8): 085401. DOI: 10.1088/2058-6272/ac67bf
    [2]Chengxian PAN (潘呈献), Zhengming SHI (施政铭), Qianhan HAN (韩乾翰), Ying GUO (郭颖), Jianjun SHI (石建军). Numerical simulation of atmospheric pulse-modulated radio-frequency glow discharge ignition characteristics assisted by a pulsed discharge[J]. Plasma Science and Technology, 2020, 22(1): 15405-015405. DOI: 10.1088/2058-6272/ab4d7d
    [3]Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
    [4]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [5]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [8]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [9]JI Liangliang(吉亮亮), ZOU Shuai(邹帅), SHEN Mingrong(沈明荣), XIN Yu(辛煜). Radio Frequency Underwater Discharge Operation and Its Application to Congo Red Degradation[J]. Plasma Science and Technology, 2012, 14(2): 111-117. DOI: 10.1088/1009-0630/14/2/06
    [10]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05

Catalog

    Article views (366) PDF downloads (636) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return