Advanced Search+
ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
Citation: ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02

Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

Funds: supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)
More Information
  • Received Date: December 03, 2015
  • The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.
  • 1 Roth J R, Nourgostar S, Bonds T A. 2007, IEEE Transactions on Plasma Science, 35: 233 2 Moon S Y, Han J W, Choe W. 2006, Thin Solid Films,506–507: 355 3 Chi Y Y, Zhang Y T. 2014, Plasma Science and Technology, 16: 582 4 Shao T, Zhang C, Long K, et al. 2010, Applied Surface Science, 256: 3888 5 Wang X H, Yang A J, Rong M Z. 2011, Plasma Science and Technology, 13: 724 6 Lu X, Laroussi M. 2006, Journal of Physics D: Applied Physics, 39: 1127 7 Shi J J, Kong M G. 2007, Applied Physics Letters, 90:101502 8 Moon S Y, Han J, Choe W. 2006, Physics of Plasmas 13: 013504 9 Shi J J, Zhang J, Qiu G, et al. 2008, Applied Physics Letters, 93: 041502 10 Balcon N, Aanesland A, Bosewell R. 2007, Plasma Sources Science and Technology, 16: 217 11 Shi J J, Cai Y Q, Zhang J, et al. 2009, Physics of Plasmas, 16: 070702 12 Park J, Henins I, Herrmann H W, et al. 2001, Journal of Applied Physics, 89: 15
  • Related Articles

    [1]Ilya ZADIRIEV, Elena KRALKINA, Konstantin VAVILIN, Alexander NIKONOV, Georgy SHVIDKIY. Comparison of pulse-modulated and continuous operation modes of a radio-frequency inductive ion source[J]. Plasma Science and Technology, 2023, 25(2): 025405. DOI: 10.1088/2058-6272/ac8fca
    [2]Qianhan HAN (韩乾翰), Chenyu WU (武晨瑜), Ying GUO (郭颖), Jianjun SHI (石建军). Temporal evolution of atmospheric cascade glow discharge with pulsed discharge and radio frequency discharge[J]. Plasma Science and Technology, 2020, 22(3): 34014-034014. DOI: 10.1088/2058-6272/ab6760
    [3]Chengxian PAN (潘呈献), Zhengming SHI (施政铭), Qianhan HAN (韩乾翰), Ying GUO (郭颖), Jianjun SHI (石建军). Numerical simulation of atmospheric pulse-modulated radio-frequency glow discharge ignition characteristics assisted by a pulsed discharge[J]. Plasma Science and Technology, 2020, 22(1): 15405-015405. DOI: 10.1088/2058-6272/ab4d7d
    [4]Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
    [5]Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
    [6]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [7]LI Xuechen (李雪辰), ZHAO Huanhuan (赵欢欢), JIA Pengying (贾鹏英). Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(11): 1149-1153. DOI: 10.1088/1009-0630/15/11/13
    [8]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05

Catalog

    Article views (366) PDF downloads (636) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return