Advanced Search+
JIAO Zhihong (焦志宏), WANG Guoli (王国利), ZHOU Xiaoxin (周效信), WU Chaohui (吴朝辉), ZUO Yanlei (左言磊), ZENG Xiaoming (曾小明), ZHOU Kainan (周凯南), SU Jingqin (粟敬钦). Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse[J]. Plasma Science and Technology, 2016, 18(12): 1169-1174. DOI: 10.1088/1009-0630/18/12/05
Citation: JIAO Zhihong (焦志宏), WANG Guoli (王国利), ZHOU Xiaoxin (周效信), WU Chaohui (吴朝辉), ZUO Yanlei (左言磊), ZENG Xiaoming (曾小明), ZHOU Kainan (周凯南), SU Jingqin (粟敬钦). Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse[J]. Plasma Science and Technology, 2016, 18(12): 1169-1174. DOI: 10.1088/1009-0630/18/12/05

Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse

Funds: supported by National Natural Science Foundation of China (Nos. 11264036, 11465016 and 11364038)
More Information
  • Received Date: February 21, 2016
  • We perform an experimental study of two-dimensional (2D) electron density pro?les of the laser-induced plasma plumes in air by ordinarily laboratorial interferometry. The electron density distributions measured show a feature of hollow core. To illustrate the feature, we present a theoretical investigation by using dynamics analysis. In the simulation, the propagation of laser pulse with the evolution of electron density is utilized to evaluate ionization of air target for the plasma-formation stage. In the plasma-expansion stage, a simple adiabatic fluid dynamics is used to calculate the evolution of plasma outward expansion. The simulations show good agreements with experimental results, and demonstrate an effective way of determining 2D density profiles of the laser-induced plasma plume in gas.
  • 1 Ren J, Cheng W, Li S, et al. 2007, Nat. Phys., 3: 732 2 Ren J, Li S, Morozov A, et al. 2008, Phys. Plasmas,15: 056702 3 Cheng W, Avitzour Y, Ping Y, et al. 2005, Phys. Rev.Lett., 94: 045003 4 Ping Y, Cheng W, Suckewer S. 2004, Phys. Rev. Lett.,92: 175007 5 Pai C H, Lin M W, Ha L C, et al. 2008, Phys. Rev.Lett., 101: 065005 6 Spence D J, Hooker S M. 2000, Phys. Rev. E, 63:015401 7 Xiao Y F, Chu H H, Wang J, et al. 2004, Phys.Plasmas, 11: 21 8 Shkolnikov P L, Lago A, Kaplan A E. 1994, Phys. Rev.A, 50: R4461 9 Teubner U, Gibbon P. 2009, Rev. Mod. Phys., 81: 445 10 Geddes C G R, Toth C, Schroeder C B, et al. 2004,Nature, 431: 538 11 Sprangle P, Hafizi B, Penano J R, et al. 2000, Phys.Rev. Lett., 85: 5110 12 Gordon D F, Sprangle P, Slinker S, et al. 2006,Sparca simulation model for electrical discharges. NRL/MR/6790-06-8974, Naval Research Laboratory,Washington 13 Marinak M M, Kerbel G D, Gentile N A, et al. 2001,Phys. Plasmas, 8: 2275 14 Le H C, Zeitoun D E, Parisse J D. 2000, Phys. Rev.E, 62: 4152 15 Kaganovich D, Gordon D F, Helle M H, et al. 2014, J.Appl. Phys., 116: 013304 16 Pretzler G, J?ager H, Neger T, et al. 1992, Z.Naturforsch., 47a: 955 17 Ping Y, Geltner I, Morozov A, et al. 2002, Phys.Plasmas, 9: 4756 18 Li S Y, Guo F M, Song Y, et al. 2014, Phys. Rev. A,89: 023809 19 Couairona A, Mysyrowicz A. 2007, Phys. Rep., 441:47 20 Yablonovitch E, Bloembergen N. 1972, Phys. Rev.Lett., 29: 907 21 Tzortzakis S, Prade B, Franco M, et al. 2000, Opt.Commu., 181: 123 22 Jin C, Le A T, Lin C D. 2011, Phys. Rev. A, 83: 023411 23 Mulser P, Bauer D. 2010, High Power Laser-Matter Interaction. Springer-Verlag, Berlin Heidelberg, p.5 24 Geissler M, Tempea G, Scrinzi A, et al. 1999, Phys.Rev. Lett., 83: 2930 25 Rae S C, Burnett K. 1992, Phys. Rev. A, 46: 1084 26 Zhao S F, Liu L, Zhou X X. 2014, Opt. Commu., 313:74 27 Anisimov S I, B?auerle D, Luk'Yanchuck B S. 1993,Phys. Rev. B, 48: 12076 28 Singh R K, Narayan J. 1990, Phys. Rev. B, 41: 8843 29 Durfee III C G, Lynch J, Milchberg H M. 1995, Phys.Rev. E, 51: 2368 30 Boris J P, Grinstein F F, Oran E S, et al. 1992, Fluid Dynamics Research, 10: 199

Catalog

    Article views (348) PDF downloads (599) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return