Advanced Search+
XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01
Citation: XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01

PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2015GB110003, 2011GB105001, 2013GB111000), National Natural Science Foundation of China (No. 91130031), the Recruitment Program of Global Youth Experts
More Information
  • Received Date: April 21, 2015
  • A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is approximated by J-pole expansion. Subsequently, the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system. Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate; more strongly damped modes are less accurate, but are less likely to be of physical interest. In contrast to conventional approaches, such as Newton’s iterative method, this approach can give either all the solutions in the system or a few solutions around the initial guess. It is also free from convergence problems. The approach is demonstrated for electrostatic dispersion equations with one-dimensional and two-dimensional wavevectors, and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species.
  • 1 Xie H S. 2014, Computer Physics Communications,185: 670 2 Ronnmark K. 1982, KGI Report, No. 179, Sweden 3 Ronnmark K. 1983, Plasma Physics, 25: 699 4 Verscharen D, Bourouaine S, Chandran B D G, et al.2013, The Astrophysical Journal, 773: 8 5 Gary S P. 1993, Theory of Space Plasma Microinstabilities. Cambridge University Press, New York 6 Gary S P, Liu K, Winske D. 2011, Phys. Plasmas, 18:082902 7 Willes A J, Cairns I H. 2000, Phys. Plasmas, 7: 3167 8 Verdon A L, Cairns I H, Melrose D B, et al. 2009,Phys. Plasmas, 16: 052105 9 Lin Y, Wang X Y, Lin Z, et al. 2005, Plasma Phys.Control. Fusion, 47: 657 10 Martin P, Donoso G, Zamudio-Cristi J. 1980, J. Math.Phys., 21: 280 11 Cereceda C, Puerta J. 2000, Phys. Scr., 2000: 206 12 Tjulin A, Eriksson A I, Andre M. J. 2000, Plasma Physics, 64: 287 13 Robinson P A, Newman D L. 1988, J. Plasma Phys.,40: 553 14 Xie H S. 2013, Phys. Plasmas, 20: 092125 15 Xie H S. 2013, Phys. Plasmas, 20: 112108 16 Gurnett D A, Bhattacharjee A. 2005, Introduction to Plasma Physics: with Space and Laboratory Applications. Cambridge University Press, Cambridge 17 Birdsall C, Langdon A. 1991, Plasma Physcis via Computer Simulation. IOP, New York 18 Gitomer S J, Forslund D W, Rudsinski L. 1972,Physics of Fluids, 15: 1570 19 Stix T. 1992, Waves in Plasmas. AIP Press, New York 20 Xie H S, Zhu J, Ma Z W. 2014, Phys. Scr., 89: 105602 21 Qi L, Wang X Y, Lin Y. 2013, Phys. Plasmas, 20:062107 22 Bao J, Lin Z, Kuley A, et al. 2014, Plasma Phys. Control. Fusion, 56: 095020 23 Andr′ e M. 1985, J. Plasma Phys., 33: 1 24 Bret A, Gremillet L, B′ enisti D. 2010, Phys. Rev. E,81: 036402 25 Hao B, Ding W J, Sheng Z M, et al. 2012, Phys. Plasmas, 19: 072709 26 Timofeev I V, Annenkov V V. 2013, Phys. Plasmas,20: 092123 27 Qin H, Phillips C, Davidson R C. 2007, Phys. Plasmas,14: 092103 28 Umeda T, Matsukiyo S, Amano T, et al. 2012, Phys.Plasmas, 19: 072107 29 Howes G G, Cowley S C, Dorland W, et al. 2006, The Astrophysical Journal, 651: 590

Catalog

    Article views (412) PDF downloads (865) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return