Advanced Search+
JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12
Citation: JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12

Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning

Funds: supported by National Natural Science Foundation of China (No. 11305017)
More Information
  • Received Date: February 12, 2015
  • In this study an atmospheric pressure Ar/O2 plasma jet is generated to study the effects of applied voltage and gas flux rate to the behavior of discharge and the metal surface cleaning. The increase in applied voltage leads to increases of the root mean square (rms) current, the input power and the gas temperature. Furthermore, the optical emission spectra show that the emission intensities of metastable argon and atomic oxygen increase with increasing applied voltage. However, the increase in gas flux rate leads to a reduction of the rms current, the input power and the gas temperature. Furthermore, the emission intensities of metastable argon and atomic oxygen decrease when gas flux rate increases. Contact angles are measured to estimate the cleaning performance, and the results show that the increase of applied voltage can improve the cleaning performance. Nevertheless, the increase of gas flux rate cannot improve the cleaning performance. Contact angles are compared for different input powers and gas flux rates to search for a better understanding of the major mechanism for surface cleaning by plasma jets.
  • 1 Kalin B A, Yakushin V L, Vasiliev V I, et al. 1997,Surf. Coat. Technol., 96: 110 2 Yi C H, Lee Y H, Yeom G Y. 2003, Surf. Coat. Technol., 171: 237 3 Belkind A, Krommenhoek S, Li H, et al. 1994, Surf.Coat. Technol., 68: 804 4 Belkind A, Li H, Clow H, et al. 1995, Surf. Coat. Technol., 76: 738 5 Kormer N, Beck E, Dommann A, et al. 1995, Surf.Coat. Technol., 76: 731 6 Petasch W, Kegel B, Schmid H, et al. 1997, Surf. Coat.Technol., 97: 176 7 Roosmalen M J E V, Diggelen M V, Woerlee G F,et al. 2003, J. Supercrit. Fluids, 27: 97 8 Nie Q Y, Ren C S, Wang D Z, et al. 2008, Appl. Phys.Lett., 93: 011503 9 Deng X T, Shi J J. 2005, Appl. Phys. Lett., 87: 153901 10 Stoffels E, Sakiyama Y, Graves D B. 2008, IEEE Trans. Plasma Sci., 36: 1441 11 Zhang X, Huang J, Liu X, et al. 2009, J. Appl. Phys.,105: 063302 12 Lu X P, Ye T, Cao Y, et al. 2008, J. Appl. Phys., 104:053309 13 Lim J P Uhm H S. 2007, Phys. Plasmas, 14: 093504 14 Stoffels E, A. Flikweert J, Stoffels W W, et al. 2002,Plasma Sources Sci. Technol., 11: 383 15 Lu X P, Jiang Z H, Xiong Q, et al. 2008, Appl. Phys.Lett., 92: 081502 16 Li S Z, Huang W T, Zhang J L, et al. 2009, Appl.Phys. Lett., 94: 111501 17 Araya M, Toshifumi Y J, Takayuki W, et al. 2007,Thin Solid Films, 515: 4301 18 Kim M C, Yang S H, Boo J H et al. 2003, Surf. Coat.Technol., 174: 839 19 Iwasaki M, Matsudaira Y, Takeda K et al. 2008, J.Appl. Phys., 103: 023303 20 Yamakawa K, Hori M, Goto T, et al. 2004, Appl. Phys.Lett., 85: 549 21 Walsh J L, Shi J J, Kong M G. 2006, Appl. Phys. Lett.,88: 171501 22 Le P S, Li G, Wang S, et al. 2009, Appl. Phys. Lett.,95: 201501 23 Li S Z, Huang W T, Wang D Z. 2009, phys.Plasmas,16: 093501 24 Lee C J, Lee S K, Ko D C, et al. 2009, J. Mater. Process. Technol., 209: 4769

Catalog

    Article views (1325) PDF downloads (1087) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return